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SOME SEQUENTIAL, DISTRIBUTION-FREE PATTERN

CLASSIFICATION PROCEDURES WITH APPLICATIONS
By

J. L. Poage

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

Some sequential, distribution-free pattern classification
techniques are presented. In many classification problems, the
observations on which the classification decision is to be based are
costly to measure. A sequential test seems apprcpriate since ob-
servations are measured only until enough information is known to make
a decision with a certain level of confidence. Also in many cases, the
only information available about the pattern classes is a set of ti'a.ining
samples from each class. Since the underlying probability density
functions are unknown, distribution-free classification methods are
needed. The specific decision problem to which the proposed classifi-
cation methods are applied is that of discriminating bet\x;een two kinds
of electroencephalogram (EEQG) responses recorded from a human
subject - spontaneous EEG and EEG driven by a stroboscopic light
stimulus at the alpha frequency. Sequential, distribution-free methods

are suitable since it is generally desired to terminate the EEG recording
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) as quickly as possible and since there is no knowledge of probability
density functions underlying the EEG waveforms.

The classification procedures proposed make use of the theory of
order statistics. Estimates of the probabilities of misclassification.
are given. One of the methods presented is an estimated version of
the Wald sequential probability ratio test (SPRT)}. This method utilizes
density function estimates, and in formulating this test, a new
probability density function estimate is propose;d. Convergence in
probability of the estimate to the true density function is shown. The
other method presented is a sequential version of the separating hyper-
plane approach to pattern classification.

The procedures were tested on Gaussian samples and on the EEG
responses. Smaller error rates were easier to obtain with the
estimated SPRT. In particular, error rates as low as .1% were obtained.
With sequential tests, it is possible to specify the probability of error
decisions before the test is conducted, and the experimental error rates

of the procedures agree with the specified error probabilities.
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CHAPTER 1

R

INTRODUCTION

I.1 Pattern Classification Problem

In the pattern classification problem, a pattern is given that

was drawn from one of several pattern classes, and a decision must

be made as to which class the pattern was drawn. In order to claasify

the pattern, a way must be found to characterize the pattern, and

IR

then a method must be developed of processing the characterization

of the pattern to classify it. It is usual to attempt to characterize

the pattern as a set of s real numbers x = (xl,xz,o..,xs). The
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components xi of the pattern vector are called features and are usually
measurements of various attributes of the pattern. The choice of

features to characterize the pattern is called the feature extraction

&
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problem. While any number of pattern classes is possible, this report
will consider only classification problems with two pattern classes
C1 and Cz. Once the observation x has been characterized as a vector,
the problem of classifying x can be formulated as finding a scalar
function g(x) such that x is classified as coming from C1 if g(x) < 0
and as coming from C2 if g(x) > C.

In viewing the classification problem geometrically, each pattern
has been considered as a point in an s-dimensional space. Thus

g(x) = 0 is a separating surface that divides the sample space into two

regions corresponding to classifying the pattern x as coming from

C1 or Cze



In most meaningful classification problems, the two pattern
classes overlap to some extent and so are not separable in the
s—-dimensional space. The objective in this case is to construct
a classification procedure that is optimal in some sense as regards
misclassifications.

Since a pattern can be treated as a set of real numbers, the
two pattern classes will be characterized in this report by the
probability deasity functions f(xlﬂl) and f(xlcz). This does not
mean the density functions are always known but means that the patterns
from each class can be treated as random variables with a particular
probability density function. It may be that the density functions
reflect noisz in measuring the features, or it may be that the
patterns themselves follow a particular density function.

Before proceeding to a more detailed discussion of pattern
classification methods, an example of a classification problem will

be given.

1,2 Electroencephalograms

The application of pattern classification techniques to the bio-
medical field has received increasing attention in recent years. One
gpecific area that has been studied is that of making decisions about
the state of a patient based on electroencephalograms (EEG). An
EEG is a recording of the electrical activity of the brain. From the
EEG waveform, some assessment can be made on the state of the patient;

for example the level of consciousness of the patient can be determined
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or some pathelogical conditions of the brain can be detected. The
electrical activity is measured by electrodes on the surface of the
scalp, and the EEG wave is generally considered to be a recording
of the gross activity of a large number of cells. An EEGlresponse
can thus be considered to be a sample from ahrandom process. The
pattern classification aspect of the rroblem now becomes apparent.

An EEC measured from a patient placed in a darkened, soundless
room isolated from extermal stimuli is called a spontaneous EEG. If
a light is flashed periodically into the patient's eyes, the resulting
FEG wave between two consecutive flashes is called an evoked response.
This report will treat a classification problem to determine whether
given EEG responses are spontaneous or evoked.* As mentioned pre-
viously, in order to classify an EEG wave, a set of features to
describe the wave must be extracted, and a decision rule to classify

the set of features must be formulated.

I.3 Feature Extraction

Prabhu {1} has written a paper that discusses feature extraction

for the EEG classification problem. As recorded from the patient,

*Although the flashing of the light can be readily detected by

merely observing the light, this thesis attempts to make the
decision on the light by observing an EFG response from the

patient. The decision prcblem considered here is a first step
toward more meaningful problems such as determiring the level or
unconsciousness of a patient during surgery. An unconscious patient
would react differently to a light stimulus than an awake patient.



the EEG is a continuous waveform of the amplitude of the electrical
activity. The response between two cousecutive flashes of the light
is considered to be one sample. To facilitate the use of a digital
computer, the amplitude was sampled in time at a set frequency sec
that each sample EEG response was a vector. If the sampling rate is
high, the dimension of the sample vector may be quite large. Since
the complexity involved in finding a suitable decision rule ircreases
as the dimension >f the sample increases, a subset of the features
may be selected to be used in the decision rule. Prabhu [1] has
developed a feature reduction scheme that picks a subset of the total
number of features. The features in the subset are selected
according teo their effectiveness in some sense for classification
purposes. This feature reduction method is discussed in detail in

Appendix IT.1 and in Prabhu [1].

.4 Structure of the Classification Problem

Now that a set of features has been extracted so that the EEG
responses can be represented as vector samples, a decision process
for classifying the EEG samples must be developed. The purpose of
this report is to develop some classification techniques that are
applicable to a class of problems represented by the EEG decision
problem. Before discussing the specific properties of this class of
problems, some general considerations of classification problems
wiil be presented.

In classifying an observation x, the two types of errors possible

2

are to decide x € C° when actually x € Cl, called error of type I,
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and to decide x € C1 when actually x € Cz, called error of type II.

Criterions for evaluating the effectiveness of decision rules are
usually expressed in terms of the probabilities of these error
occurring. Let 0 = p(error of type I) and B = p(error of type II).
Three examples of criterions expressed in terms of o and B follow.
1l.) If the prior p;obabilities of an observation coming from
C1 or Cz, p(Cl) and p(Cz) respectively, are known, then an expected
loss function associated with a misclassification can be expressed

as

E(loss of misclassification) = Lap(C) + L,Bp(c?)

where L1 and L2 are the cost of errors of type I and type II. A
possible criterion is to formulate a decision rule to minimize
the expected loss function. The Baves test [2] satisfies this
criterion.

2.) Another possible criterion is to require that o be below
a specified value and then minimize QB. This criterion is followed
by the Neymann-Pearson test [3].

3.) If the number of observatiors drawn before making a decision
ig variable and not predetermined, a decision rule can be devised
where both ¢ and R are below specified values. The Wald sequential
probability ratio test [4] satisfies these conditions and minimizes
the expected number of observations needed for a decision.

Another factor thaf influences the cholce of methods for solving

a classification problem is the type of information known about the



two pattern classes. When the probability density functions describing
the pattern classes are known, there are many well-known decision
tests that can be used, such as those already mentioned. In many
cases, however, the density functions are unknown, but sets of samples
drawn from each class are known. These sets of samples from each

class are called training sets. When training sets are the only in-

formation available, pattern classification techniques must be formulated
from the training sets without using the demsity functions.

The development of a decision procedure then depends on two
factors:

1.) the information known about the two pattern classes, and

2.) the criterion.

The choice of a criterion is influenced by the information available,

e.g. if the density functions are unknown it is not possible to

minimize the actual probability of a misclassification but only

perhaps an estimate of it. Tﬁe criterion also embodies the

characteristics that are important to a particular decision problem,

such as the number of observations that may be taken before a classification

decision is made.

1.5 The Approach Taken in this Report

In the classification problem of the EEG waves mentioned in Section

1.2, the underlying density functions of the EEG waves are unknown.
But it is generally possible to record a series of EEG responses from

the patient to use as training sets. Pattern classification procedures
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that do not involve knowledge of the underlying density functions

are called distribution~free. The techniques proposed in this

report are distribution—free.

In making medical tests on a patient, the measurements are often
costly and discomforting to the patient. Thus it seems desirable
to terminate the measurements as quickly as possible, but at the same
time the final decision on the state of the patient must be made with

a certain level of confidence. A zequential test appears appropriate

for many bio-medical classification problems since observations are
taken one at a time only until enough information is known to make
a decision with a certain level of confidence. In sequential tests,
the p(error of type I) and p(error of type II) can both be specified
before the test. Sequential tests are suitable for the EEG decision
problem since the stroboscopic light can be flashed and responses
sampled on demand until enough data has been gathered to make a decision.
As mentioned in the previous paragraph, sequential methods take
cbservations one at a time until the string of observations provides
enough information in some sense to classify the observaticns. If the
observations are vectors, a whole new vector obaervation of the several

features i1s taken. After each observation is taken, three outgomes are

possible:

1.) decide the observations taken so far are from Cl

2.) .decide the observations taken 80 far are from 02
3.) decide to take another observation since not enough
information is known to make z decision.

Stated analytically, the classification problem using the sequential

method iz to find a scalar function and two thresholds such that after



t observations have been taken

; g(xl,xz,...,xt) £ B decide C1
B < g(xl,xz,...,xt) < A take another observation
B(X,3Xys00esX ) 2 A decide C2 .
1°72° Tt

Since the two thresholds can be set independently, it is possible to
p construct a sequential test where the p(error of type I) and p(error
of type II) are both specified to be certain values. As an example,
consider Figures I.1 and 1.2. In the test using one cbservation

shown in Figure 1.1, two outcomes are possible, and a decision is

made according to which side of a single threshold the observation
lies. Since only one threshold ic used, the probabilities of type I
and type II errors cannot be set independently. In the sequential
methed of Figure 1.2, three outcomes are possible after each observation
is taken. The two thresholds that separate the three decision regions
can be set independently, and hence the snrobrbilities of errors of

type 1 and type II can both be set to specified values. Since only
enough observations are taken to make a decision with the confidence
that the p(error of type I) and p(error of type II) have certain
values, the sequential method has the merit that test procedures can be
constructed which require, on the average, fewer observations than
equally reliable test procedures based on a predetermined number of

observations [4].




Decide x ¢ C' Decide x e C°

f(x]|C?)

p(error type I) -/ p(error type I)

FIGURE I.1
Error Probabilities for Testing Cne Observation

Decide x € C' Decide x eC?
take
another
[observation
f(x|C") f(x|C?)
p(error typel) %p(error typel)
FIGURE 1.2

Error Probabilities for Sequentiai Test
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The classification procedures proposed in this report are dis-
tribution-free and sequential. The methods are applicable in
classification problems where:

1.) the density functions of each class are unknown but training
cets are known, and

2.) a string of a variable number of observations, all from the

same unknown e¢lass, can be sampled on demand.

1.6 General Outline

Two types of sequential, distribution-free procedures are presented
in the chapters that follow. In one, a series of thresholds are
calculated from training samples, and each observation that is taken
in the sequential sampling is compared to a different pair of thresholds
depending on the number of the iteration. In the other approach, the
same pair of thresholds is used throughout the sequential procedure,
and the scalar function of the observations that is compared to the
thresholds is altered at each iteration to include the information
contained in the new observation. Chaptef II describes the former approach,
and Chaptefs I1T through VI are concerned with the latter. ’
Chapter II presents a brief review of the theory of order statistics

and then uses some results from order statistic theory to calculate a

set of thresholds for a sequential test. The thresholds are calculated

from the training sets in such a way that an estimate of the probability
of a misclassification is obtained. Multidimensional samples are

treated by transforming them into scalars with a linear transformation.
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Experimental results are shown for the procedure tested on both Gaussian
and EEG data.

Chapters III through VI are concerned with the estimation of
probability density functions from training samples and the use of
density estimates in a sequential test called the sequential probability
ratio test (SPRT). The SPRT utilizes the ratio of the two density
functions representing the pattern classes. The ratio of the densities
18 evaluated at the values of the observations and compared to two
thresholds. Since the density functions are unknown in the problems
consideréd in this thesis, estimates of the densities are used in the
SPRT. Chapter I11 discusses some approaches for estimating density
functions and surveys several known estimateg. A new density estimate
is proposed in Chapter IV, The estimate is éf a step=function form
where the boundaries of the steps are determined by the training
samples. The estimate is shown to converge in probability to the true
density as the number of training samples tends to infinity.

Chapter V begins with a discussion of the SPRT, and then formulates
an estimated version of the SPRT with the new density estimate. The
new density estimate was chosen because of its low computer storage
requirement and ease of calculation. Experimental results are shown
for independent Gaussian samples. Some techniques for handling multi-
dimensional samples and dependent observations are discussed in Chapter VI.
The-methods involve taking a linear combination of the features of multi-
dimensional samples or taking the sum of several dependent observations
so that only scalar samples are considered. The procedures are tested

on EEG data.



CHAPTER II |
A SEQUENTIAL BISTRIBUTION-FREE PATTERN CLASSIFICATION
" PROCEDURE USING ORDER STATISTICS

This chapter presents a sequential, distribution free pattern
classification procedure that makes use of some results from order
statistics., The material in this chapter is self-contained, and

future chapters do not depend}on what is developed here.

I1.1 Introduction

The algorithm that follows assumes the tyre of prior information
and criterion listed in Section 1.5 namely that a training set from
each class is known and the test is to be sequential. One pepular
method of solving the classification problem with training sets is to
place a hyperplane between the two sets of training samples that
separates the two classes of samples as much as possible. An observation
is classified according to which side of the hyperplane it lies. Generally
such algorithms provide no direct estimate of the probability of mis-
classification, and the decision is made based on examining only one
observation. Henrichon and Fu [5] have formulated an algorithm which
partitions the sample space into decision regions by training on sample
sets of known classification and uses order statistics to find an upper
bound on the misclassification probability. This chapter presents a
method which attempts to improve the error in classifying observations
from inseparable classes by taking scveral obserﬁations before deciding
on classification. The observations are drawn sequentially. A distribution-
free estimate of the probability of misclassification is presented. The

remainder of the chapter describes the algorithm and experimental results.
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I1.2 Assumptions

The method is designed to decide if an unknown observation
belongs to one of two classes which shall be referred to as class 1
and class 2. The algorithm is trained on sample sets of known
classification and is distribution free. The following assumptions
are made about the samples:

i. that a training set from each class is known

ii. that the samples are independently, identically distributed

in each class

*
iii. that the random variables from each class are of the continuous type

(thus the probability of any two samples being equal is
zerc)

iv. that eseveral chservations, all from the same unkmown class
to be classified, can be taken since the method is to be

sequential.

I1.3 Order Statistics and Ordering Functions

Seversl properties of order statistics are used in this chapter.
A brief presentation of order statistics, inc..ding some distribution-~
free properties, is given in this section without proof. Appendix II.3

may be consulted for a more detailed discussion of order statistics.

.
A random variable is of tiie continuocus type if the distribution function

F(x) is everywhere cortinuous and the density function f(x} = F'(x)

exists and is continuous for all x, except possibly at certain points

of which any finite interval contains at most a finite number. Thus
< p

F(x) = pn € x) = I £(t)dt [6]. A function F(x) which has these

-0
properties ie said to be absolutely continuous.
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Let X1x2,...,xg=be a set of n independent scalar random variables from
a continuous probability distribution function F(x). The samples

can be arranged in ascending order, Xi < Xi < 60 < Xi . For

1 2 n
convenience, let the samples be relabeled, Ylnx1 ,anxi ""Ynfzi , 80
< 2 2 _ n
that Yl < Yz < c0a < Yno. In the set (Yl,Yz,...,Yn), each member Yi

is called an order statistic. If X is a scalar random variable, F(X) is
also a random variable. The random variable F(X) turns out to have

a uniform distribution on the interval (0,1). Recall that the random
variable F(X) can take on values between 0 and 1, and F(X) = p{n < X).

So it is equally likely for amy random sample X that p{n < X) be anywhere

hetween 0 and 1. The expectation of F(Y,) -~ F(Yi) can be shown to be

k|
-1
EF(L) = FODI =57 3>t . (11.1)
Thus
1
E[F(Yj+1) - F(Yj)] =1 (I1.2)

It is observed that n random variables thus arranged in ascending
order partition the density function into a+l parts. The expected
value of the probability of a sample falling between any two neigh-
boring order statistics is 1/(n+l). The variance of [F(Yj)—F(Yi)]

can be shown to be

BL(F(Y,)-F(¥))-B(F(Y,)-F(r)))]? = RpIHED - qp 5
. (o+l) " (n+2) .

For dealing with multi dimensional samples, ordering functions
are used to transform the vector samples onto the real line. Let X

be a multidimensional random variable with a continuous distribution
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function F(x)., If W = g(X) is a random variable with a . ntinuous
distribution function G(w), theng(x) is an ordering function.

Kemperman [7] has shown how the sample space can be partitioned using

a clase of ordering functions so that the distribution of the

probability of a future observation falling in any partition can be

found. An example of using one linear ordering function for partitioning
the sample space is given in Figure II.1l. For the randoﬁ sample xi,xz,...,xn
from the multivariate, absolutely continuous distribution function F(x), if

the transformed vectors are ordered, g(Xi ) < g(xi } € 4ee< g(Xi ) and
2

1 n
relabeled, Wl = g(xi ), Wz = g(x1 ) Wn = g(Xi ) then -
1 2 n
- = A=k 1
EIG(Wj) G(Wk)] 71 i>k (1I1.4)

= E[p(g(xi ) < g(x) < alx; )]
k 3

The expected probability of a future observation falling in the block

partitioned by g(x, ) and g(x, ) is =k, for j > k. Foxr example,
i i n+l
3 k
let g(xl,xz,..n,xs) = a1x1+azxz+...+ sxs be a linear function and

let KysEpseonsX, be a set of n vector samples. Then if the trans-
formed samples are arranged so that g(xi 3} < g(xi ) LS <g(xi ),
1 2 n
then the expected probability of a future observation falling in the
segment between the planes g(x, ) and g(x ) 1is - independent
ij ij+1 n+l
of the choice or g as well as the underlying distribution for x.

Ordering functions and order statistics are discussed more fully

in Appendix II.3.
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Given sample set X,, X5, -+, X, of two dimensional vectors

from density f(x)
' g(x) = a,x"+a,x?

An estimated 100 per cent of all samples from the
density f(x) I|e wn‘hln each segment.

Figure II.1

Example of Linear Ordering Fumction
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1I1.4 The Algorithm

11.4.1 Use of Two Thresholds

In dealing with multidimensional samples, this chapter uses the
same ordering function throughout for any one testing procedure. The
use of a single ordering function may not be optimal for many data sets,
but for some unimodal densities with one region of overlap the
shapes of the data sets are such that the use of a linear ordering
function sufficilently separates the two classes. Utilizing different
ordering functions for different iterations requires considerably
more computation and is discussed further in Section II.7. Of
course, for scalar samples the question of an ordering function
does not arise. TFor whatever ordering function is chosen, the
object of the algorithm is to decide to which class an unknown
observation belongs So the ordering function chosen should separate
the two classes of training samples as much as possible.

A convenient type of orderimg function to use is a linear
function. The distribution of the linearly transformed samples is
continuous. Figures I1.2 and II.3 show two examples of linear ordering
functions. The two training sets in the figures cannot be separated by
a linear function. The function gz(x) of Figure 11.3 separates to a
greater degree the two classes of training samples than the function
gl(x) of Figure 11.2. For a decision algoritim, the ordering function
gz(x) is the better choice.

Many algorithms exist which yield a single linear separating

plane between the two classes of training samples. Ho and Agrawala [2]
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g,(x, ,Xa) = a‘;x,+aéx2

x — Class {1 sample
o — Class 2 sample

Figure II.2

Linear Ordering Function with Poor Separating Qualities

:/ //// /
/&//J///
77/
NS
/ // / {/ ga(xti"a"""'"”‘"”;xz

Figure II.3

Linear Crdering Function with Good Separating Qualities
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give a survey of many linear separating algorithms. The equation
of such a separating hyperplane can be used as an ordering function
since it has good separating qualities.

When a single ordering function is used on all training samples
the expected probability of a new sample falling in the segment
between any two planes, each placed through a training sample,
is the same as the expected probability of the transformed sample
falling betweea the transformed points of the order statisties., So
hereafter, the sample points will be considered to have been trans-
formed and all samples will be considered to be real scalars. Also
all observations to be classified will be assumed to have been trans-
formed into scalars. The two classes are assumed to have one region of
overlap. For two inseparable classes of samples, the samples of class 2
are taken to lie largely above those of class 1. See Figure I1.4 for
an example. A decision is made by comparing an unknown observation
with two thresholds which are placed in the cverlap region.

If the unknown observation z lies above both thresholids, it is
assigned to one class; if =z lies below both thresholds, it is assigned
te the other class; ané if z lies between both thresholds, another
observation is takem as z lies in the region of overlap. The procedure
is applied to the new observation which is compared with a new set of
thresholds. It is assumed that all new observations ccme from the same
class. Figure 1I.5 provides an example of the algorithm showing how
the thresholds, labeled A and B, change for each iteration. Nzw observations

are taken until a decision is mdde, and then the algorithm is terminated.
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TAKE
DECIDE GLASS 1 ANOTHER DECIDE GLASS 2
SAMPLE

/i

7}1 N\
AREA IS PROBABILITY OF ERROR AREA IS PROBABILITY OF ERROR
DECISION GIVEN SAMPLE IS FROM DECISION GIVEN SAMPLE IS FROM

GLASS 2. GLASS 1.

FIG.II.4

Decision Regions for Sequential Test
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Thresholds Changing in Time
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The new observation that is taken in each iteration of the algorithm
is compared with a2 new pair of thresholds that correspond to that
iteration.

i1.4.2 Setting Thresholds for First Iteration

The thresholds are calculated by using some theory from erder
statistics on the training sets of each class in such a way as to
give an estimate of the probability of a misclassification. The
n samples, now sealars, from each of the two training sets are
ordered separately in ascending magnitude. The ordering for ome

class is

Let the training samples be relabeled for convenience

Ve ® X, 5 Vo B X, jeeey = X .
1 il 2 12 n in

The training samples are now in ascending order,

Yl<y2< leu<yn Y
If z is an unknown observation, then

p(classification error) = p(classification errorlz € class 1l)p(z € class 1)

+ p(classification error]z € class 2)p(z € class 2).

Thus the error probabilities for each class, p(classificétion-error
|z € class j) j=1,2, can be calculated separately. The setting of

thresholds will now be exzmined in detail for one class, say class 1,
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and the ordered training set, vy < Y, < 400 < Y willl be considered
to be from that class. The following discussion of setting thresholds
applies to either class.

Given the set of ordered statistics from one class,

the probability that an observation from this class is less than any
member of the ordered statistic, Yj’ is F(Yj). From equation (II.1)

3
E(F(Yj)) ==7 - (11.6)

An estimated 100j/(nt+l) percent of all future observations lie below

Yj (or 100(n+1~j)/(n+l) percent exceed Y,.) Figure I1.6 gives an

3
example with the two training sets together. The overlap region of
the inseparable training sets has been taken to be at the higher end
of the class 1 order statistics and lower end of the class 2 order
statistics.
In the following formulation of the thresholds, A(k) represents
the upper threshold and B(k) the lower threshold where k represents
the numwber of the iteration of the sequential test. A(k=1) will now
be descermined in such a way that p(classification error'z € classl)
can be estimated. If the first unknown sample lies above both thresholds,
it will be classified as belonging to class 2 which would be an error,
If it lies below both tXresholds a correct clasyification of class 1

would be made. If it falls between the thresholds, another observation

should be taken. Sée Figure II.7. To obtain an estimate of the
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CLASS 1 TRAINING SAMPLE CLASS 2 TRAINING SAMPLE

. /

I IR ———H-O—H-ORODHH-OH-O-O-R-O-OK—OH¥H—0—O0——0—a0— 20—

AN ESTINATED '°°’1 PER GENT AN ESTIMATED 'OOJ PER CENT

OF CLASS 2 DATA POINTS LIE >0F CLASS 1 DATAPOINTS LIE

BELOW THE j-th SMALLEST ABOVE THE i -th LARGEST

VALUE OF THE n-DIMENSIONAL VALUE OF THE n- DIMENSIONAL

TRAINING SET OF CLASS 2. TRAINING SET OF CLASS t
FIG. .6

Estimating Probabilities from Training Samples
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TAKE ANOTHER

DECIDE CLASS 1 SAMPLE DEGIDE CLASS 2
ERROR REGION GIVEN | | ERROR REGION GIVEN
SAMPLE FROM CLASS 2 B(k) ACk)  SAMPLE FROM CLASS 1

FIG. T.7

Thresholds for Sequential Test

Bik=1) Ak=1)
1
ng,~1 TRAINING SAMPLESOF| "T2 SARPLES 1ok -t TRAINING SAMPLES OF
CLASS 2 . |fROMCLASS2 | ™ ¢LAsS |
X N XX —HH—OX-OXON-OPKO-X-O-COXONK-OHH OXO~ON-X-0——O0—0—0-0—0—0—
N

Dy, SAMPLES
FROM CLASS 1

1 }
Yne2 Yn‘-ﬂe‘-ﬂ

FIG. II.8

Estimating Thresholds for Sequential Test
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probability of an observation from class 1 falling above the upper g
threshold, the number of training samples from class 1 that fall 5
:

above the threshold A(k=1) can be used. 2
Let the threshold A(k=1l) be set equal to the value of the ;

ni -th largest order statistic of the training set of class 1, é
A(k=1) = Y 1 , then n~ -1 training samples lie above 5
ny~ny +1 _ eq ;

1

A(k=1). The superscript on n represents the number of iterationms

and the subscript the class. Thus

bk o ' e, ta
g athe WY e g e deaeTom o e

Elp(2,>A(k=1) |z, eC’] = BT, 1]
1

and from equation (II.1)

o = 4 . * "
31 2o kG Tt s e g o

E(I-F(Yn _”nl +1)) = l_E(F(Yn _nl +1))
1 e 1l e
i 1
1
nl—nei+1

n, + 1

= -

n

o e ANty £t PV P 20 P e

E(l-F(Yn _n;_ +1)) = -3 (11.7)

1oy

L
.

It ¢ e

ik ek

1f p is the desired probability of error for class 1 on this iterationm,

then ni should be chosen so that
1

35 e e A g A IOt T 1 E Tyt 1
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1
and so solving for n
e
1
1
n, = (n, +1)p . (11.8)
e 1
1
When ni is not an integer, the greatest integer less than n1 is
1

€1
used! {w] will represent the largest integer less than or equal to
w. A(k=1) is then set equal to Yn1+1—[ne 1

1

B{k=1), the error threshold for class 2, is determined similarly

from class 2 training samples. As the error region for class 2 lies

at the lower end of the ordered training samples, B(k=1l) 1s set equal

to the ni -th lowest order statistic of class 2,

2
1
n
€2
E(FQY 1)) = —357 - (11.9)
ez- 2 ,

e
2
observation from class 2 on the first iteration,

is chosen such that p is the desired error probability of an

1
n
€9
nz+1 P
1l
n = {n, + 1)p . (11.10)
e, 2

B{(k=1) is set equal to Y[nl )" The setting of A(k=1) and B(k=1) is
€2
illustrated in Figure 11.8.
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I1.4.3 Thresholds for the Second and Following Iterations

1f the observation on the first iteration falls between the b
thresholds, a second observation is taken. Figure II.5 provides an |
example. New thresholds are found for teeting the second observation.

The probability of the first observation falling between the thresholds

can be estimated by counting the number of training samples between

the thresholds for each class. Again taking class 1, let ni be the
1

number of training samples between the thresholds on the first iter-

ation, see Figure II.8. Then an estimated (ni + 1)/(n1+1) percent 5
1 =

of the area under the density function for class 1 falls in the region
between the thresholds.

Actually the lower threshold is based on class 2 so that there
is not one whole interval between class 1 sample points but a
fraction of onc at the lower end of the region between the thresholds.
In practice, nil is usually large enough that counting the interval

as a whole has a negligible effect on ni .
1

For a decision to be made resulting in a classification error on
the second iteration, the first observation must fall in the region
between the thresholds of the first iteration and the second observation
in the error region of the second iteration. If p is the devired
probability of error for the second iteration, then we desire

p(lst observation between thresholds)p(2nd observation in error regicn) = p

p(B(k=1) < 2z, < A(k.ul))p(z2 > A(k=2)) = p

1
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But p(B(k=1) < z, < A(k=1)) and p(z2 > A(k=2)) are unknown, and

1
they can only be estimated. So the number of training samples

in the error region for the second iteration is chosen as

ni + 1 n2
1 1 _ .
n1+1 n1+1
n. +1
nz = i (n1+1)p
1 n +1
I
§
n, +1
nz - ni (11.11)
1 n_ +1 1
Ty

from equation (II1.9). A(k=2) is set equal to the [nz 1-th largest
' 1
training sample, A(k=2) = Ynl_[nz 1+1° B(k=2) is set similarly

1
using the training samples of class 2. It is desired that

p(B(k=1) < z, < A(kal))p(z2 < A(k=2)) = p which can be estimated ]

1
by considering

ni + 1 ni !
2 2 - p
Il2 +1 n2+1 i

and solving for nz

i n, . (11.12)
n
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B(k=1l) is set equal to Y[n2]°
e

n.+1
As i > 1, then by referring to equation (I1.11) it is
n_ +1
1
seen that nez > ni' which implies A(k=2) € A(k=l), and for similar
1 1

reasons B(k=2) > B(k=1). Thus the thresholds for the second
iteration will be closef together than the thresholds for the first
iteration.

The number of training samples between the thresholds for
the second iteration are counted for each class, nil and niz. Then
nzl and nzz can be calculated. For an error decision on the third
iteration both, the first and second observations must fall betveen
their respective thresholds, and the third observation must fall in
the error region.

The calculation of the thresholds continues, with the thresholds.

for each iteration being calculated simultaneously. Figure II.5

again gives an illustrative example. In general,

p(B(k=1) < 2z, < A(k=1)):--p(B(k-1) < z, _, < Alk-1))p(z, > A(K)) = p

1

The estimated form is

1 2 k-1 k
(nr +1) (nr +1) (nr +1) n

1 1 1 1
(n1+1) (n1+1) (n1+1) (ni+1)

= p, (11.13)
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and solving for n:

1
(n. +1) (n,+1) (n,+1)
ng T e = vl el (11.14)
1 (nr +1) (nr +1) (nr +1)
1 1 1
(n,+1) _
e = —r— e L. (11.15)
1 (n_ "+1) 1
T
1
Similarly,
(n,+1) _
ng = —2— ot (11.16)
2 (n_ "+1) 2
T
2
A(k) is set equal Ynlﬂ[nk 141 and B(k) egual Y[nk 1’ As
e e
1 2
ni+1 n,+1
>1 and >1, the bounds move closer together.
k-1 k-1
n 41 n_ +1
1 )

Eventually, for some k, the thresholds will cross. This happens

when n: and n: become sufficiently large that B(k) > A(k). The
algoritim will ge terminated for this value of k, and the two thresholds
are replaced by a common threshold. Let this terminal value of k be
called N. A decision will be made at k = N if the algorithm proceeds

this far. In the examples to follow the common threshold was set by

averaging the thresholds for k = N-1.

A(N) = B(N) = [A(N-1) + B(N-1)]/2 . (I1.17)
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This could of course be set in other ways.
The algorithm as presented has taken the probability of error
and ending on each iteration to be the same for each class,
p(error decision and end on k-th iterationlunknown € Cl)

= p(error decision and end on k~th iteratiom|unknown € Cz) = P,

These could be set equai to different values if so desired. Although
then the prior probabilities of which class the unknown observotion
beiongs, p(unknown € Cl) and p (unknown € CZ), should be known in

order to calculate the estimated error decision probabilities.

I1.5 Application of Algorithm

The application of the algorithm can be divided into two parts,
the formulation of the thresholds and the use of the thresholds to
classify an unknown observation. This section briefly reviews the
steps involved in both parts. Figure II1.5 can be referred to as an |
exanmple,

First the thresholds are set using training sets from the two
clasges. An ordering function is chosen that separates to some
degree the two classes of training samples, and the training samples
are reduced to scalars using the ordering fumetion. The training

sets of scalars from each class are ordered,

Class 1 : yi<y;<...<yi1 Class 2 : yi<y§<..f<yf‘2

The parameter p is chosen. The number of samples in the error

region for the first iteration is found,
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n1=(n + 1)p n. = (n, + 1)p
e 1 9 2

and the thresholds are set,

A(k=1) = Y B(k=1) = Y[né 1 °

-fnl
ni+1 [ne 1 )

1

The number of training samples between B(k=1) and A(k=1) in each

class are counted, ni and ni respectively. Then for the second

1 2
iteration, k=2,

2 Ml 1 2 Wptl
ne =71 ne Be. =71 ne

1 n +1 1 2 nr +1 2

b 1 2
AGe2) = Y 41 (a2 ] B(k=2) = Yy 2 1 .
€1 €y

Then ni and ng are determined by counting the number of training
1 2

samples of class 1 and class 2 between B(k=2) and A(k=2). For any

iteration k,

I A S P D S
& ol o & ol e
'.':'1 r2

A(k=k) = Yn1+1-[nk 1 B (k=k) = Y[nk 1 .
e e
1 2
Determine nt and n: by counting the samples of class 1 and class 2
1 2 |
between B(k) and A(k). Whenever A(k) £ B(k), call k = N and set one

common threshold A(N) = B(N).
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In applying the algorithm to classify unknown observations
each observation is first reduced to a scalar by using the ordering
function. The first observation Zq is compared to the thresholds

A{k=1) and B(k=1). If

2y < B(k=1) decide class 1
zy > A(k=1) | decide class 2
B(k=1) < 2, < A(k=1) take another observation

1f another observation is taken, Zos then it is similarly compared
to A(k=2) and B(k=2). At each iteration that is needed, the bounds

for that iteration are used. For any iteration k,

2, < B(k) decide class 1
zy > A(k) decide class 2
B(k) < Zp < A(k) take another observation

If the procedure goes until k = N, a decision will be made then as

there is only one threshold.

11.6 Estimated Probability of Misclassification

The probability of‘misclasaification for the algorithm will
now be considerad. The algorithm can end on only one iteration
so the events of ending with an error decision om the k-th iteration
and of ending with an error deéisioﬁ on the j-th iteration are |
mutually exclusive for k # j. The probability of error cam be

expressed as
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N
p{error decision) = I p(error decision and end on k-th iteration)

k=1
(11.18)
where
p(error decision and end on k-th iteration)
= p(error decision and end on k-th iteration|unknown € Cl)
*p (unknown ¢ Cl)
+ p(error decision and end on k-th iterationunknown € 02)

«p (unknown € Cz). . (I1.19)

Consider first the case where the unknown observations ZysZgsenes

are from class 1. Then

p{error decision and end on k-th iteration|unknown € Cl)

= p(B(1) < 2, < A(1))p(B(2) < z, < A(2))-->

p(B(k-1) < z < Alk=1))p(z, > A(K)).

k-1
(II.20)

All the thresholds are calculated from the training samples, and so

p(B(1) < zy < A(1)),p(B(2) < z, < A(2)),c0.,p(B(k-~1) < Y < A(k-1),

p(z, > A(k))

are random variables. Also since the thresholds were éalculated from
the same training samples, these random variables are dependent, and
the expectation of the left haﬁd side of equatioa (II.20) is nbt
equal to the product of thé expectations of the terms on the right

hand side. As it iz not readily apparent how the.true e#pectation
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can be found, the expasctation is approximated, however, by

pferror decision and end on k-th ite:ation[unknown £ Cl)

= Ep(B(1) < z, < A(1))Ep(B(2) < z, < A(2))---

1

Ep(B(k-1) < 2z < A(k-l))Ep(zk > A(k)). (I1.21)

k-1

The symbol p is used to denote that the term is an approximation

of the expected value.

By the construction of the algorithm,

p(error decision and end on k-th iteration|unknown € Cl) = p.

(11.22)

A similar procedure can be used to show

p(error decision and end on k-th iterationlunknown € Cz) = p,

(11.23)
Thus from equation (11.19),

p(error decision and end on k-th iteration)

= p-p{(unknown € Cl) + pep{unknown € C2) = p,

and so

N

P(error decision) = ] p
k=1

[ TP

T T, o RN T R

otard R e

[T U TRV PP BTy

ey
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*
plerror decision) = Np. (11.24)

As mentioned previously, Np is not the true expected probability
of error since the product of expectations of dependent random
variables was taken. Loosely speaking if there are one hundred
training samples, the addition of another sample provides more
information tc revise the estimate of the probability of error

than if there are one thousand samples. Thus as the number of

*Since p is a specified parameter, it can be shown that Np € 1 by
showing that N, the maximur number of iterations, has an upper
bound of 1/p. N will have its largest value when the probabilities
of an observation falling between the thresholds and not being
classified at each iteration have their largest values. Consider
first the probability of an error decision given the string of
observations is from class 1, At each iteration, Ep(zkx 2> A(k))
is determined before Ep(B(k) < zk < A(k)) is determined, and thus
the upper bound on Ep(B(k) < zx < A(k)) is 1-Ep(zy > A{k)). For
convenience, let pek = Ep(z;, 3 A(k)) and so l-pgk is the upper
bound on Ep(B(k) < zi < A(k)). Using these upper bounds, the
thresholds at each iteration are found by setting

(l-pel) (1_pe2) ree (&-pe (k"l))pEk =P
as is done in equatiems (I1.13) and (I1.14). For k = 1, the
thresholds are set such that pg] = p, and by induction, it can be
shown that pg, = p/[1-(k-1)p] when the above equation is used to
determine the thresholds. The thresholds are determined so that
the fraction of training samples exceeding A(k) is equal to Pek:
Since the fraction cannot exceed one, the procedure for generating
the thresholds at each iteration will stop before pgk equals 1.
Thus pek = pl1-(k-1)p] € 1 which implies k € 1/p. The analysis
is similar when the string of observations is assumed to be from

class 2, and the same npper bound on k is found Thus N< 1/p
and p(error decision) € 1.
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training samples approaches infinity, the knowledge of

p(B(k) < z, < A(k)), k=1,2,...,N, becomes precise and the bias in

k
the estimates of the probability of error would be expected to

tend to zere. Also in the next section, a comparison is made of
experimental results of the algorithm trained on one set of training
samples with results of using a different set of training samples

to calculatz the pair of thresholds at each iteration. The use of

a different set of training samples to calculate the pair of

thresholds at each iteration makes the terms p{B(k) < z, < A(k)),

k
k=1,2,...,N, independent so Np is actually the expected probability

of error. In most practical problems, however, using a different

set of training samples at each iteration would require an excessive
numher of training samples. The experimental comparison showed

there was little effect on the experimental results of using the

same set of training samples, A slight approximation was also intro-
duced when the value calculated for the mumber of a training sample
was not an integer and the largest integer less than the value-was
used. These approximations seem unavoidable when the number of train-
ing samples 1s finite.

If Np is not near the desired value, p can be varied,; which will
change N and hence Np. N is dependent on the value of p chosen, and
generally for smaller p, N becomes larger. N is also dependent on
the two sets of training samples. If the training sets have # large

overlap, N will be large. This is to be expected as the region of

indecision ig large so more iterations will result.
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The probability of making an error deecision om the N-th or
last iteration is actually not equal to p as the two thresholds
were combined into one instead of allowing them to cross. The
actual error estimate can be made by counting the number of
training samples for class 1 and class 2 which would result in
an error decision on the N-th iterations. Let mz, be the number
of training samples of class 1 above A(N) = B(N) ind mz be the

2
number of training samples of class 2 below. Then

p(error decision and end on N-th iteration|unknown ¢ class 1)

n1 +1 ni +1 n§61+1 mg
- 1 1 e 1 1
nl+1 n1+1 n, + 1 n1+1
= mN ~1B—
e N
1 ne
1

from equation (I1.14) where ng is defined by equation (1II.14).
i

A similar equation applies to class 2, The total estimated probability

of error is

p (error decision) = (N-1)p + m: —2 o(unknown € class 1)

1 nz
1
+ mN B p (unknown € class 2)
e N :
2 n,
2

As p is small, Np gives an adequate expression for ﬁ(errﬁr decision)

for most values of N and p.

An intuitive explanation for the closing together of the thresholds
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can be given. In order for the algorithm to proceed to the second
iferation, the first observation must fall between the first two
thresholds. For a decision to be made resulting in an error on the
second iteration, the second observation must fall in the error
region. Let p be the desired probability of making a decision which
ends in an error at each iteration. To obtain p on the first iéeration,
the probability of falling in the error region should be p. For an
error decision to be made on the second iteration, the first obser-
vation must fall between the thresholds and the second cbservation
in the error region. The probability of this is p(B{(k=l) < 2, < A(k=1))-
p(22 £ error region for k=2) = p. As p(B(k=1) < 24 < A(k=1)) < 1,
p(z2 € error region for k=2) is greater than p(z1 € errcer region for
k=1), and thus the error decision region for k=2 can afford to be
larger than for k=1 leading to a smaller overlap region. The same
argument applies for larger k.

The setting of the estimated p(error decision on iteration k)
eaqual to p for each iteration was done so that an estimate of fhe
proﬁability of error for the algorithm could be obtained. This also
resulted in a finite number of iterations for the algorithm. The
probability of error is.estimated looking from the beginﬁing of

the test before any samples are taken.

I1.7 Remarks

In treating multidimensional samples in the experimental results

of the next section, the same linear ordering function was used. in
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determining the threshclds for all the iterations. Using the same
linear ordering function throughout the algorithm may be suitable
when tiie data comes from unimodal densities which have one region
of overlap between the two classes. For some sample densities,
another type of ordéring function might be preferable. The most
desirable procedure would be not only to locate a plane for each
threshold, but to determine the orientation of the plane in order
to optimize the procedure. At each iteration, all coefficients
2 s

{ui} in the linear ordering function alxl+a2x +...+asx = Q

would be determined instead of finding only Oy e For example, the

G

number of training samples to be placed in the error region for each

threshold, nz and nz s could be found as explained previously. TFor
2
1 .
each iteration, a plane would be placed through a training sample

of class 1 so that nz samples from class 1 lay on the error decision
1

gide of the plane and the plane oriented so that the number of training
samples of class 2 on the same side was maximized. Such a technique
would set f(error decision on k-th iteration|class 1) = p and maximize
the probability of a correcf claggification for a class 2 observation.
A similar procedure would be applied using cléss 2 fraining samples

to the other plane and the class 2 error region. This method would
give P{error decision on k-th iteration!class'i)a p, i=1,2, and

would also minimize the number of iteraticns. But this technique
requires a considerable amount of computation. Such a procedure

might have to be repeated several times to find the best training
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sample through which to place the plane, and then the computation
must be done for the planes at each iteration. The choice of an
ordering function for multidimensional sample pattern classification
is an area in which further work cam be done. Of course for scalar
samples the question of choice of an ordering function does not
occur. For the examp]es_in the next section, a single linear ord.ering
function was thought to be sufficient considering thé extra amount

of computation required to orient a different plame at each iteratilon.

IT1.8 Experimental Results

The algoritha was tested on Gaussian random variables and on
electroencephalogram (EEG) signals. The results for scalar Gaussian
samples are given in Table II.l1. Several training set sizes and
several values of the parameter p are given. The algorithm for
each set of parameters was tested on one thousand observations from
each of the two classes,

The algorithm was also tested on EEG signals which are discussed
in Section I.2 and in Appendix 1I.2. The EEG signals are from a
subject with a strobe light flashing in his eye or from the subject
with the light off. It is desired to decide on the basis of EEG
signals 1f the light is flashing or not. The signals with the light
off will be called class 1 and with the light on class 2. The EEG
responses were comtcinuous signals of 160 millisecoﬁﬂ duration, and
the responses were sampled every millisecond to obtain a one ﬁundreﬂ

dimensional vector for each sample. A feature reduction scheme of




Parameters

Experimental Results
Number of N = maximum j Averaéé numnber Estimated Class 1 Class 2
training samples number of experimental error mean=-, 8 mean= , 8
p for each class of iteratioms iterations for rajfe = Np | experimental {experimental
L0y =, for decision decision. error rate .error rate
Class 1 Class :
= .01 99 12 4.74 &.54 .12 0474 .0666
p = .01 199 Q 4.03 3.95 .09 0444 L0712
p=.01 399 9 3.93 3.70 .09 .0630 .0741
p+= .01 999 7 3.3 . 2.90 .07 .11 .058
p = .005 199 13 4.95 L.74 0%5 .0346 0711
p ‘5005 399 13 5.02 5.12 .065 .0352 .0718
p= .005 999 10 4.33 3.89 .05 .065 .055

Variance of hoth classes = 1

TABLE TI.1

Gaussian Experimental Error Rates

A%t
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Prabhu [1, 8], which is explained in Appendix I1.l, was used to
select a smaller number of features from the 10N-dimensional

vector to make the testing procedure more manageable. For most
tests two features were used. Of the one hundred features, features
eighty-five and fifty-seven were selected as containing the most

significant information. A linear ordering function was used,

7 = OgqXgy * Cgs¥gs

The algorithm was trained on one section of EEG data from the subject
and tested on another section from the same subject. Table II.2

gives error rates on the testing samples for several parameter p values.
The samples were taken serially as they appeared from the patient.

Five hundred testing observations were used in all cases.

An examination of the EEG responses showed that the samples are
correlated and nonstationary. The independence assumption of the
algorithm is violated. The nonstationarity means that the samples
are not identically distributed. The correlation of the samples
along with the nonstationarity contributed to the‘higher than estimated
error rates in Table II.2.

To test the alpgorithm on data which was independent and uncorrelated,
one thousand serial samples of FEG waveforms were mixed together so
they no longer appeared serially as they were recorded from the patient.
The results for the mixed samples appear in Table I1.3. The experimental
error rates in this case agree more closely with the estimated error

rates. This indicated that all the assumptions of the algorithm are



Parameters Experimental Results
Number of N = maximum Averaée number Estimated Class 1 Class 2
training samples number of experimental error (no strobe) (strobe on)
P for each class of jterations iterations for rate = Np experimental | experimental
m, = n, for decision deciﬁion- error rate error rate
Class 1 | Clags 2
= ,01 29 6 1.9 1.8 .06 .209 0757
= 01 199 7 2.22 2.55 .07 .186 .0612
= ,01 399 8 3.42 3.05 .08 .199 .0548
= ,01l% 299 9 3.57 4.13 .09 .128 .066
y = 005 199 12 | 3.68 6.25 .06 11 .0875
= ,005 399 11 3.91 4.35 .055 .132 .0789
= ,005% 999 14 4.8 6.10 .07 .107 .013
= ,001* 999 40 13.9 20.8 .04 ,0556 .0833

% Five features instead of two were used for these experiments.

EEG Experimental Error Rates

Feonrsomem eocismemehm s b

TABLE II.2
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Parameters

Experimental Results

Number of N = maximum Average nﬁaher Estimated Class-3 Class 2
training samples number of experimental error (no strobe) (atrohe on)
' for each class of iterations iterations for rate = HNp cxperimental experimental
P n, = n, for decisipn decision: error rate error rate
. Class 1 | Class 2
.01 99 10 4.81 5.15 ol .0962 .103
.01 199 10 4.63 5.88 .1 .0925 1295
.01 399 10 3.68 4,58 .1 054 .11
.005 199 16 5.95 8.33 .08 .0357 .12
.005 399 15 5.05 7.58 075 .0303 .166
TABLE II.3

Independent EEG Experimental Error Rates
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not met by the EEG waveforms as they are recorded from the a

patient.

Section II.6 mentioned that the estimated probability of error

Np is biased since all the thresholds are calculateld from the same

training samples. Table I1.4 shows a comparison of experimental

results of the algorithm trained on one set of training samples

with the results of using a different set of training samples to

calculate the pair of thresholds at each iteration.

are Gaussian as appear in Table 11.1, and p = .01 was used for all

the results.

The examples

Number Estimated Class 1 Class 2
training samples error experimental } experimental
in each class = Np error rate error rate
One truining set 99 o12 0474 .0666
Different training .09 .0468 .0675
sets
One training set 199 .09 0444 .0712
Different training .08 . 0947 .0655

sets

TABLE 1I1.4 Comparison of FError Rates for Ome Training Set

vs Raveral Training Sets

The table indicates that using a different set of training samples for

caleulating the pair of thresholds at each iteration does not give

significantly different experimental results than using one set of

training sampies. The difference between the two estimated error rates
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decreased as the number of trairing samples increased.

11.9 Conclusion to Chapter II

The algorithm presented in this chapter is a sequential
approach to pattern classification for the case where the undor-
lying probability densities of each class are unknown but training
sets are available. Whén a linear ordering function is used, the
algorithm can be viewed as a sequential variation of the linear
separating plane approach to pattern classification. The algorithm
used a different pair of thresholds at each iteration of the
sequential test. The thresholds are calculated before the test
and are independent of the observations taken during the sequential
decision procedure. The method does require some priéor assumpgions
on the pattern classes. The classes should have one region °
overlap such that when the multidimensional samples of the tu .
classes are transformed to scalars the new s~alar samples of ome
class lie largely below the new scalar samples of the other class.
For example if one class of samples is surrounded by samples of the
other, the classes cannot be separated by a linear transformation.
A nonlinear tramsformation would have to be found.

The algorithm presented in this chapter used a different pair of
thresholds at each iteratién of rhe sequential test, the next few

chapters present a sequential test where the same pair or thresholds

is used throughout the test.
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Appendix I1.]1 - Feature Reductlon and Separating Hyperplanes

The feature reduction scheme used in this report for selecting
«ignificant features out of a vector random sample of many features
was developed by Prabhu { 1], [ 8]. A measure of effectiveness of

any particular feature for classification purposes is

7.2
[ui - Ul
O3 * %43

where ui and Gii are the mean and variance of the i-th feature of

class j. The criterion picks the feature that tends to maximize

the distance between the means of the two classes while minimizing

the dispersion about the means. Considering the combined effectiveness

of a group of features, the correlation between the features is taken

into account, and the criterion generalizes to

d= @ - 1HTat + H el - vh (I1.1.2)

where uj and 5 are the mean vector and covariance matrix of the
features under consideration from class j. Since the means and
covariances of the two classes are unknown for the examples considered
in this thesis, the means and covariances are estimated from training
sets of the two classes.

Let dm be the value of the criterion in equation (I1.1.2) when
m features are considered. ‘he algorithm for selecting features from a

2

vector of g8 features, x = (xl, p ,...,xs) is :
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1l.) Select the first feature xi such that

2 1
(u -u)2 (u -u)
i i i 3
1 7 T max /™y 2
oy + U5y j o4y + 03
and so
2
;- uly
dy = —3 7 °
031 % %44

2,) At each subsequent step after m features have been chosen
and dm dalculated, the increase in the criterion (dm+l—dm) is computed
for each of the remaining features. The feature that gives rise to

the maximum increase is chosen. 7

Thus the algorithm at each step selects the feature that adds the
most to the effectiveness of the feature set already chosen where

the effectiveness is measured by equation (II.1.2). The feature
gselection procedure is not truely optimal in that the subset of the
best m features is not necessarily a subset of the best mt+l features.
To be truely optimal, the algorithm must search over all possible com-
binatiocus of m features at each step. But such an exhaustive search
becomes quickly infeasible as the total number of features increases.

The separating hyperplane that was used for transferming vecter

samples into scalars in this report is

T
aox + Bo
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where

2
o, = HethHTal - b

1 2

8 = - % al - el + 2H et - udh . (I1.1.3)

o

The weighting vector ao maxinizes

el b - u%Hi?
otz + 2

which is interpretedlas the ratio of the distance between the means

of the classes to the dispersion of the classes along the direction a.
If the classes are Gaussian, N(ul,Zl) and N(uz,zz) respectively,

then azx + Bo is the separating surface that minimizes the probability
of misclassification with the prior probabilities of each class being

equal.
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Appendix II.2 - EEG Data

A detatled discussion of the EEG data is given by Prabhu { 1],
and much of the description presented in this appendix is based on
Prabhu's discussion. An electroencephalogram (EEG) is a recording
of electrical zctivity of the brain. The electrical activity is,
of the order of microvolts and is measured by electrodes placed
on the surface of the scalp. While the precise origins of the
electrical poientials is not yet fully understood, it is generally
agreed that the potentials result from the synchronous activity of
a large number of cells. In order to maintain some uniférmity in
the EEG measurements, it is necessary to keep the patient in the
same psychological state during different recordings. When the
recording is made from an alert patient in a darkened, soundless
room cut off from external stimuli, the EEG is said to be "spontaneous."

Since an EEG recording is the result of the combined activity of
many cells, an EEG signal can be considered to be a sample from a
random process. An example of an EEG is shown in Figure 11.9.* The
EEG has been observed to have several dominant frequencies with the
most dominant between 8.5 and 10.5 c.p.s. This is called the alpha
frequency. An EEG record can be split into equal parts where the
length of each part is equal to the period of the alpha frequency. The

dotted line in Figure 1I.10 shows the average signal that results

%
Figures II.9, II.10, and 1I.11 have been taken from Prabhu [1 ].
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from averaging these parts.

While the spontaneous EEG represents the electrical activity
of the brain when nc visual or auditory stimuli is present, a
different EEG signal can be produced by a flash of light into
the patient's eyes through closed eyelids. 1If a light is flashed
periodically at a frequency very near the alpha frequency, then
the £EG has the affect of being driven into resonance. The
EEG signal between two consecutive flashes is called an "evoked"
response, and the solid line in Figure 1I,10 shows the average
signal of the evoked responses.

The classification algorithms tested in this thesis attempted
to distinguish between spontaneous EEG and evoked FEG. A signal over
one period of the alpha frequency was taken to be one sample.

The- EEG record used in this thesis was obtained from NASA through
the former Electronics Research Center, Cambridge, Massachusetts. A
recording of ten minutes duration was done on a single person in one
gsitting from a pair of electrodes located in the left occipital-
parietal area. Both spontaneous and evoked responses were obtained in
the one recording. A stroboscopic light was flashed into the eye of
the subject through closed eyelids. The frequency of the flashing
was tuned to his alpha rhythm which was approximately 10 c.p.s.,
and thus a flash occurred every 100 milliseconds. The stroboscopic
light was blocked periodically from the eye of the subject, and thereby
giving rise to spontaneous EEG. Thus the entire EEG record was com-

posed of blockg of evoked EEG driven at the alpha frequency and of
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sponganeous EEG. The length of each block was about 25 seconds.

To facilitate digital computer work, each of the waveforms was
discretized by sampling the amplitude every millisecond. Thus each
response between two successive stroboscopic stimuli would be
expected to have 100 sampled values. In practice, it was found.that
the number sometimes exceeded 1060 due to drifts in the stroboscopic
frequency. In order for the pattern vectors to be of uniform dimension,
only the first 100 values were retained.

In the experimental work of this thesis, only a few of the 100
features in each digitized waveform were used. The features were
selected by the feature reduction procedure explained in Appendix II.l.
In order to illustrate the degree of overlap between the two classes
of EEG signals, Figure II.1ll shows a plot of samples from the two
types of EEG. The samples are two dimensional with the features
being the first two sélected by the feature reduction procedure. The
line in the figure is the separating plane for the two features where
the equation of the plane is also explained in Appendix II.1l. Prabhu [1]
found that there was about 207 error rate in classification decisions

made on single observations with the smparating plane.
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Appendix II.3 - Order Statistics

This appendix will define the notion of an order statistic
and present some of the properties of such a statistic. Some
references that can be consulted on order statistics are Hogg and
Craig [2 ], Wilks [10], Fraser [11], and David [12].

Let X .,Xn be n independent random variables identically

1° X2’°'
distributed with absolutely continuous distribution function F(x)
and with probability density function f(x). Rearrange Xl,Xz,...,Xn
in ascending order so that xil € X12 € cee X Xin. For convenience

2 X ,e.., ¥ =X 80 that
1 2 12 n in

i=1,2,...,0n, is called the i-th order statistic

relabel the set as Yl = Xi sy Y

Yl € Y2 {0

of the random sample xl’XZ""’Xn'

€ s £Y¥ . Y
n

The joint density function of Yl’YZ’""’Yn can be shown to be

nif(y NeE(y,) e £G)
B(YysYgseeesy ) = ¥y €V, € orr €y, (IL3.1)

0 elsewhere

From this joint density, it follows that the marginal probability

density function of Y is

1

g (v,) = (k—1§§(n—k): [F(yk)]k_ltlmF(yk)]“"kf(yk) » (I1.3.2)

and the joint density of Yy and yj, i<j, 1s
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n' i-1 j~-i-1
((i-l)!(j—i-l)!(n-j)! [F&y )17 7 [FCy,)-F(y,)]
R 1" e 945 Y,
0 elsewhere .
\ (11.3.3)

The distribution function of F(x) will now be considered.
Let X be a random variable having an absolutely continuous distribution
function F(x) and probability density function f(x). Then the random
variable Z = F(X) has a uniform distribution on the interval (0,1).
This will be shown under the assumption that f(x) is positive and
continuous for a < x < b and zero elsewhere. The distribution

function of X can be written as

0 | X € a
X
F(x) = ! f(u)du a<x<hb
a
1 xX3b .

Then for the transformation z = F(x), dz/dx = f£f(x) for a < % < b,

and

f (x)

dx dx 1 1l -
dz' = f(x)-E; = f(x) dn/dn = f(x) ??ET =1 fora<x<b .,

Thus the probability density function of Z = F(X) is
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1 0<z<1
h(z) = (11.3.4)
0 elsewhere .
Since Z = F(X) is a random variable with a uniform distribution on
the interval (0,1), it follows that p(F(X) € v) = v, That is,
if p is the probability that a future sample will fall below the

random variable X, then the probability that p does not exceed vV is

Ve

Consider again the random sample xl,xz,.,.,xn and the set of order
statisties for this random sample Yl’YZ""’Yn' Consider further the

set of random variables F(Xi},F(XZ),...,F(Xn). Since F(x) is nondecréas-

ing in x, it follows that F(Yl) £ F(Yz) € 40s % F(Yn), and hence Zl ™
F(YI),ZZaF(Yz),..,,anF(Yn) are the order statistics of the random sample
F(Xl),F(Xz),,..,F(Xn). Since F(X) is uniform on the interval (0,1}, the

joint density function of 21,22,...,Zn is found from equation (II.3.1) to be

n! 05 2, £ 2, € °°¢ & z <1

1 2

(11.3.5)
0 elsewhere '

h(zl,zz,...,zn) = {
Similarly, the marginal density of Zk - F(Yk) and the joint density
of 2, = F(Yi) and Z

i 3
(11.3.2) and (II.3.3)

= F(Yj), i < j, can be found from equations

n. k-1 wo=k
( D 0! & 0z <l
by (z) = l |

0 elsewhere

(II.3.6)
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nd i-1

_i=i-l,.  on—j
G-DTG--D 7T 21 3z (-zy)
0<z, £z, <1
- i i
hij(zi’zj) =
0 elsewhere .

(1I1.3.7)

For the order statistics Y s¥gsesesY s the intervals (~m,yl],
(yl,yq],...,(yn,+w) are called sample blocks. The probabilities
of a future observation falling in each of these sample blocks are
F(yl),F(yz)-F(yl),...,1-F(yn) respectively. F(yj)—F(yj_l) ig called
a coverage of the sample block (yj_l,yj]° The distribution of

the random variable Zj—Zi = F(Y}-F(Yi), i < j, will now be considered.

It can be shown that the random variable Z.-Z, has the same distribution

j i

as the random variable zj-i" Thus from equation (II1.3.2), Zj-z1 -

F(Yj)-F(Yi) has the probability density functidﬂ

-

n. -i-1,. . n~j+i
(3-1-1): (n-j+1)! v (1-v) 0<v<l

h(v)=

0 elsewhere

(11.3.8)

It is noted that this is a Beta distribution B(j-i,n-j+i+l). The

mean and variance of F(Yj)-F(Yi), i < j, can be czliculated to be

HF(Y)-F(Y,)] ~ 432 | (11.3.9)
Var[F(¥,)-F(y,)] = U=tilo=itD) (11.3.10)

(n+1)% (n+2)
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In particular, E[F(Yj+l)—F(Yj)] = 1/(n+l). Thus the order statistics

partition the sample axis into n+l parts, and the expected probability

of a future observation falling in each part is 1/(n+l).

The theory of sample blocks and coverages can be extended to
more than one dimension by using ordering functions. The concept of
ordering functions will be introduced by considering a single ogdering
function to partition the s-dimensional sample space. Let

(Xl,xz,...,Xs), §=1,2,...,n,be n independent s-dimensional random
374 b

variables distributed as the random variable X = (Xl,xz,...,XS) with

2

a continuous s-variate distribution function F(xl,x ,...,xs)e If

W= t(Xl,Xz,...,Xs) is a random variable with a continuous distribution

T(+), then t(xl,xz,...,xs) is an ordering funetiua. E% = t(x;, §,...,

j=1,2,...,n, constitutes a random sample from a population whose

S
xi)i

distribution function is T(w), and the random sampile can be ordered.
Let the order statistics for the random sample (wl,wz,...,wn) be -

W, ,W, ,e.2,%W, ). Then the j-th sample block is B, = {xlt(x ) < t(x)
il 12 in i ij-l

£ t(x, )} where xi is the s-dimensional Sample such that w, = t{x ).
Y 3 i 4

Figure 1I.12 providez anm fillustration in two dimensiens. The coverages

of the n+l sample blocks are Z, = T(W, ),Z2, = T(W, )-T(W, Dyess,
1 11 2 12 11
Zn = T(Wi )—’I‘(Wi ),Zn_'“1 = l-T(Wi ) where Zj = T(Hi )_T(Wi ) is the
n n-1 n i {=-1
probability that a future observation will fall in the j~th sample block.

It can be shown that for the coverages zl,zz,...,z the sum of any

n+l
r coverages has a Beta distribution B(r,n+l-r). Thus the expécted
value of a future observation falling in any r, r € n, of the sample blocks

is f!(n+1).
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o

k-th ordering curve
wik= T(X‘,Xz)

k-th coverage
Zk 21 = T{wy )= T{wyey)
=P (observation € By)

“\\x\ k-th sample block By
Bn41 /

FIGURE II. 12

Example of Ordering Function
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For a random sample of n random variables, it is also possible
to partition the sample space into n+l sample blocks by using as
many as n different ordering functions. It can be showan {7],
[10] that the coverages of each sample block, which are the probabilities
of a future observation falling in each sample block, still follow the
Beta distribution. Thus the expected value of the probability of a
future observation falling in any r, r € n, of the sample blocks is

r/(n+l).



CHAPTER III

A SURVEY OF DENSITY FUNCTION ESTIMATES

Section I.6 of the introductory chapter mentioned that a
classification method will be presented that uses density estimates
in a sequential test called the sequential probability ratio test
(SPRT). The chapters that follow this one examine density function
estimates that are well suited for the SPRT and formulate an
estimated version of *he SPRT from the density estimates. Before proe
ceeding to such a development, this chapter presents a survey of

several known techniques for estimating density functions.

II1.1 Assumptions

In discussing the density estimates presented in this report,
the following assumptions about the samples from each class are made:
i) that the samples are scalars
ii) that the samples are independently, identically distributed
in each class
iii) that the samples of each class are of tﬁe continuous type.
(the foutnote in Section II.2 defines a random variable of the

continuous type.)

111.2 Motivation for Density Function Estimates
In order to get a clearer idea of what is involved in estimating a

density function, the definition of a density function will be reviewed.
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The probability distribution function F(x) of a random variable x is

defined as F(x) g p(n € x) and the density function f(x) is the derivative

é dF(x)
dx ‘

cussed in this report, ¥(x) is unknown. The distribution function F(x)

of F(x), f(x) In the pattern classification procedures dis-
can be easily estimated from training samples by taking as the estimate
the fraction of samples less than x (remember that only scalar samples
are being treated in this chapter.) As the number of training samples
approaches infinity, this estimate of F(x) approaches the true F(x) with
probability one and in the mean square. Cramer [6] and Rao [13] are among
many authors who discuss this estimate.

While the estimate of F(x) is straight forward, it is the estimate
of £(x) = F'(x) that is actually needed. The defipnition of a derivative,

F(x+h)-F(x~-h)

1im 7

h+0

= f(x) , (1II.1)

can be used to motivate methods for estimating f{x). Equation (III.1)

can be written more generally in terms of probabilities as

lim p(observation € A)
A+C A

= £(x) (I111.2)

where A is the width of some interval that containe x. Thus f(x) could
be estimated by first approximating f(x) as in‘the left hand side of
equation (III.1) or (III.2) and then estimating the approximation from
training samples. Most methods which have been developed for estimating

f(x) involve using equations (I1I1.l1l) and (III.2) in one of two ways:
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i) one approach is to specify the internal width A and
and let the numerator p(observation € A) be a random variable
to be estimated from the training samples
i1) another approach is to specify the numerator p(observation € A)

and to specify a certain aumber of training samples to be con-

tained in the interval A so that the denominator takes the value

of that interval width A which contains the specified n;mber of

training samples.
In i) the interval width is specified and in 1ii) the training samples
determine the interval width. Rosenblatt {J)4], Whittle [15], and Parzen
{16] have written about i) and Loftsgaarden and Quesenberry [17] zbout ii).
Cover [18] in a general discussion of nonparametric pattern recognition
methods briefly discusses the use of the Parzen density estimate in a
Bayes decision rule and mentions the estimate of Loftsgaarden and Quesenberry.
The remainder of this chapter will discuss several density estimates stressing
properties which are important to sequential decision methods where, of course,
a string of observations are comnsidered at once. Some considerations to

be described are storage requirements, complexity of calculations, and

continuity of the density estimates.

II1.3 Dengity Modele That Specify Bin Width
I1T7.3.1 Fixed Bin Model

Perhaps the simplest density function estimate is the estimate
that is often referred teo as a histogram and what will be called the

fixed bin model in this report. Referring to eguation (III.2), this
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density model sets the denominator and estimates the numerator. The
sample axis is partitioned into a number of fixed intervals as in
Figure III.1. The density estimate for an x in any interval is the
fraction of training samples in that interval divided by the interval

width. Let

n be the number of training samples

k be the number of bins

Yi’ i=1,2,...,k+1 be the bin boundaries

m, be the number of samples in the i-th bin

(or in interval (Yq5Y3412)>

then
0y
R T (Ygag7Yy)  foryy < x <y,
f(x) =
0 for x < Y, Or X > Yiet1*
(111.3)

By its construction, estimate (II1.3) is a step function. Since the intervals

are specified by the choice of the Yi's, only the Yi's and the fraction

of samples in each bin need be stored while using the estimate. Thus,

the estimate is calculated for all x at once, and the whole density estimate

is stored for future use. One question that must be answered in formulating

this eatimate is that of where to place the bins along the sampie axis. If

the bins are wide or are placed where there are few samples, the estimate

f(x) may be inaccurate, and poor use will have been made of the training samples.
Hughes [19] discusses the effect of the number of training samples and

the number of bins on the mean accuracy of a Bayes decisiom rule which uses

3
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f(x) =
yi,+1=yi

eI I H YW WP

Yi ( i+l Y41
m; TRAINING SAMPLES

IN THE i-th BIN

FIG. IOI. f

Example of Fixed Bin Density Estimate
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fixed bin density estimates. In Hughes' paper, the placement of the
training samples in the bins was given a uniform prior distribution

in order to consider all possible combinations in which the training
samples might occur in the bins. Abend and Harley [20], Chandrasekaran
and Harley {21], and Hughes [22] amend the results of this paper by

using the training samples to provide posterior estimates of the
probabilities of an observation following in each bin so that the estimates
will be consistant with the uvniform prior distribution. Patrick and
Hancock [23] examine the Bayes decision rule for problems where the train-
ing samples are available but their classification is unknown. In dis-
cussing the situation when no information is known about the density
functions, they show that a fixed bin model can still be used to estimate
the density functions.

I11.3.2 Parzen Model (Specified Sliding Bin)

Parzen [1€]) estimates the density function at x by centering a
bin of specified width about x. Similar to the fixed bin model, Parzen's
density estimate specifies the denominator of equation (III.z) and
estimates the numerator. As the bin (x-h,x+h) is glways centered at the
x for which the density estimate is desired, the mechanism of the wmodel may
be viewed as a sliding window of width 2h. Figure I11.2 illustrates the

model. The estimate at any x is

“., i f training samples in (x~-h,x+h)
Fox) = fractien o ghn n (111.4)

The model is similar to the fixed bin model in that the bin width is
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?(x) _ fraction sumple;r:n (x-h, x£h)

FIG. .2

Example of Parzen Density Estimate
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specified, and again there is the question of how wide to set the bin.
it may be that for some x the interval (x-h,x+h) does not contain a
great enough percentage of the training samples to provide an accurate
estimate of f(x). Given an x, it may be necessary to change h until a
satisfactory number of samples is contained in (x-h,x+h). Parzen and
Rosenblatt have developed formulas for h as a function of the number of
samples s¢ that h minimizes the mean square error of the estimate, but
these expressions require a knowledge of f£(x) and usually f"(x). The
utilization of this model in a decision algorithm requires that all
training samples must be stored. The estimate is then calculated for
each x. The estimate in equation (III.4) i3 not continuous, but the
general formula for the Parzen estimator presented in the next paragraph
can provide a continuous estimate.

Let there be n training samples {xi}, i=1,2,...,n. Then Parzen's
model can be expressed in a general formula

£ (x) -;—h-%;-)— {f K(;-—(-:—;') (111.5)

i=1
where

sup  |R(y)| <=
...na<y<m

r IK(y) [dy < =

lim |yR(y)| =0
y;wb

r K(y)dy = 1



111-9

are conditions necessary for equation (III.5) to asymptotically
be an unbiased estimator of £(x). The estimate (III.5) converges
to £(x) 1in the mean square if h(n) + 0 and oh(n) + ® as n »+ =,
The convergence condition h(n) * 0 may be interpreted in equation
(I11.4) as letting the interval width shrink to zero while the condition
nh(n) + © requires the number of samples in the interval to approach
infinity.

if
for |y} < 1

K(y) = (11X.6)
0 for |y| > 1

(XY

then equation (II11.5) agrees with equation (II1I.4). The Parzen estimate
is continuous in x for other choices of K(y). An example of K(y) which

results in a continuous estimate is to take

., 1.2
K(y) = ——¢ 27 (I11.7)
Var

For this choice of K(y), estimate (IIL.5) is the sum of n Gaussian
densities when each Caussian density is centered about a training sample.
¥an Ryzin [ 24] has developed a classification procedure that

makes use of the Tarzen estimator in Bayes rule.

111.4 Density Models where the Bin Width is Determined by Training Samples

I1I1.4.1 Nearest Neighbor Density Estimate (Variabie Sliding Bin)

Loftsgaarden and Quesenberry [17] have developed an estimate that

employs an interval which is centered at x and whose width is determined
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by the training samples. Unlike the fixed bin and Parzen models, the
estimate of Loftsgaarden and Quesenberry specifies the aumerator of

equation (II1.2) and estimates the denominator. In Section III.3.2,

it was mentioned that the ?arzen model could be viewed as a sliding

bin of specified width centered at x. Similarly the Loftsgaarden

and Quesenberry estimate can be viewed as a sliding bin of variable

width. An integer 2(n) is chosen (n is always taken to be the number of
training samples), and the £{(n)-th nearest tyaining sample to x, called % (n)
igs found. The interval width is then taken to be 2|x~x2(n)|, and it follows

that the fraction of samples inside the interval is (2(n)-1)/n. The estimate
is ;

f(x) = &Ltl?;:—]:/Zwaxg(n)l (111.8)

AEREALSE XYk o e

where xk(n) is the 2(n)-th nearest sample to x according to the
distance measure |x—y|. Figure III.3 provides an example. The

estimate (I1I.8) converges to £(x) in probability if L(n) + o

TR T 0T PTG T Ry T S

and £(n)/n + 0 as n » ©», The condition (n)/n + 0 lets the width wlx—xz(n}l

shrink to zero while the condition 2£(n) + < allows the number of

training samples contained in the interval to approach infinity.
Metrics other tham |x—y| may be used in the estimate. In general,

1f the metric d(x,y) is employed, the estimate is

F(x) = M-“BT'l/Zd(x,an)) (111.9)

where xz(#) is the 2(n)~-th closest training sample to x according

to the metric d(x,y).
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A (d(n)-1)/n

f(x) =
'/ le-an)l

r——-1—=-1
. i
l [
[ i
l I
| |
i I
i [
et 3 -3¢ e3¢ 3¢
| N
- v ! F(n)-th closest
width of interval sample fo-x
= 2 |X—X“n)l

FIG. III.3

Example of Neareat Neighbor Density Estimate
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The estimate of Loftsgaarden and (Quesenberry is related to
the nearest neighbor methods of pattern recognition [25, 26}. 1In
the nearest neighbor (NN) methods, an observation is classified
into that class which is most heavily represented among some
specified number of nearest neighbors of the observation. Since the
estimate of Loftsgaarden and Quesenberry involves finding the
f£(n)-th nearest neighbor to x, it will be called tﬁe nearest neighbor
(NN) density estimate in this thesis.

The NN density estimate is continucus in x. All training
samples must be stored in order to use the estimate, and then for
any particular sample value x, the estimate is calculated. In the NN
estimate, the bin centered at any x always contains a specified number
of training samples; whereas in the Parzen estimate, in which the bin
width is specified before hand, the interval may contain so few
samples that the estimate can be quite inaccurate. This problem of

bin placement is discussed further in Sections III.5 and IV.3.2.

II1.5 Accuracy and Storage of Density Estimates

The purpose of studying density function esﬁimates in thié repoit
is to examine their use in sequential classificacion algorithms. 1In
practical decision problems, the amount of storage available for storing
the density estimates during comﬁutation is limited. While limiting
the storage of the density estimate is necessarv, the accuracy of the
estimate is thereby decreased.

In considering the accuracy of estimates of continuous density

functions, the accuracy may be divided into two parts, one of a
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deterministic nature and the other of 2 random nature. Density
estimates make a deterministic approximation of f(x) in the neigh-
borhood of x and then estimate the value of the approximation from
the training samples. Thus, the training samples are not used to
estimate f(x) directly but rather to estimate some deterministic

approximation to f(x), which is 2 function of F(x), such as

F{xt+h) ~ F(zx~h)
2h ¢

(111.10)

The total accuracy of the estimated density depends onm how accurate
an estimate of the approximation can be obtained from the training
samples (the random part) and on the accuracy of the approximation
(the deterministic part,)

For example in the Parzen estimate of equation (III.4), the density
function is approximated by [F(x+h) - F(x~h)]/2h. The interval width
2h is specified, and then F(x+h) - F(x-h) is estimated from the training
samples. No matter how accurately F{x+h) - F(x~h) is estimated, the
accuracy of the Parzen estimate will hé low 1if [F(xth) - F(x-h)1/2h is
a poor approximation of f(x). Likewige, if F{x+h) - F(x-ﬁ) is poorly
estimated, the density estimator will be inaccu:até even though
[F{xt+h) ~ F(x—h)]/Zh'may accurately approximate f(x). Both the deter-
ministic and random parts of a density estimate must be good fer the
total estimate to be accurate. The conditions for comnvergence of equation
(I11.5) express this phenomenon. The condition h(n) + 0 requires the
the ianterval width to shrink to zero and thus the deterministic
part to converge; m - © caufies the estimate of F(x + h) - |

F(x ~ h) and hence the random part to converge. Both the
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random and deterministic parts must converge simultaneously. The
condition nh(n) =+ « means that as the interval width shrinks to
zero the number of samples inside the interval approaches infinity.
In general, the deterministic part of the accuracy depends on the bin
size and the random part on the number of training samples including
the number of samples inside the interval. The choice of the bin
size is a trade off between making it small to provide determin;itic
accuracy or large to give random accuracy by containing a large
fraction of training samples. Rosenblatt [14] shows that density
estimates must be bilased for a finite number of samples. The bias
arises from the determimistic approximation of £{x). The estimate of
the approximation can be unbiased, but the error in the approximation
still remains.

Since the intervals of the Parzen and NN estimates are centered
at x, they are more accurate in the deterministic sense than the
fixed din model. But the Parzen and NN methods require storage of
all training samples for good random accuracy. The fixed bin model
sacrifices some deterministic accuracy but retains good random accuracy
in limited seerage.

This chapter has discussed some properties of differeat density
estimates, but a more detailed discussion will be presented in the
next chapter in connection with 2 new proposed estimate. The various
properties of the density estimates discussed so {ar seem to be determined
by two factors, 1l.) whether the bin width is specified or is set by the
training samples and 2.) whether the density function is estimated for

all x at once and the total estimate stored, or all the training samples
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] are stored and the density 1s estimated separately for each x.
Table I1I.1 lists the density estimates in a matrix form and shows
how the various estimates are related te these two factors. Also
listed are properties of the density estimates as determined by the
two factors.

There is one blank position in the two by two matrix in Table III.1,
and the next chapter will propose a demsity estimate that fits into
the blank slot. The density estimate will combine some properties of
the NN and fixed bin estimater as the blank position in the matrix
indicates it should. The model will be a step fuﬁction so the small
; storage advantage of the fixed bin model will be retained. But the bin
E widths and positions will be determined by the training samples so
' that the bin placement will result in an accuracy greater than the

fixed bin model.

A D A L W R e R




Properties Influenced by Factor 1
Factor 2 In £(x)=p(xeh)/A
: I den-minator numerator Difficulty Convergence
Total Single specified, specified, of bin size conditions as
Point 1 Point 2 numerator denominator choice? # training
Estimate | Estimate estimated estimated more less  samplesg-sw
Bin Width . specified bin
Set by NN / - width+0 at such
Training i 17,183 a rate that #
Samples samples in bin-w
Factor 1
Fixed # samples spec-
Bin Bin Parzen ified in bipi H
Width 19,20 16,18 Y 4 at such a rate . —
1
Specified 21,22,23 | 24 that bin width-0 =
:;o;:z:::azlnfluenced ‘ 1. In Total Point Estimate, the density function is
estimated for all x at once, and the total estimate
Is bin centered at x? no Y 1s stored.

yes Y 2. 1In Single Point Estimate, all training samples are
stored and the density is estimated separately for each x.

Storage requirement iﬁ:;z / / 3. These numbers indicate references in the bibliography.
. 4. When the bin width is specified, there is a problem of
Computational complexity how to choose it initially so as to comtain a number of
for any x ‘ less v training samples that would give a reasonable estimate.
more v In letting the training samples set the bin width, a reason-
able estimate is more readily obtained.
::ﬁ::acy in determinigzzz / 5. The number of samples specified in the bin+® but a rate
more y sufficiently slower than the total number of training

samples»® in order that the bin width that contains the
specified number of samples—0.

TABLE III.1 Properties of Fixed Bin, farzen, and NN Density FEstimates




CHAPTER IV

RANDOM BIN MODEL

Chapi~~ III discussed three density eatimates: the fixed bin
model, the Parzen model, and the nearest neighbor model. Both
the fixed bin and Parzen models havéna computational disadvantage
in that the bin width is specified before the density is estimated
from the training samples. It is not known where to position the
intervals in relation tc the distribution of the training samples,
and it is posesible that the bin width could be set so wide as to
contain half or even all of the training samples. If an interval
contains too large a percentage of samples, the bir width can be
changed and the density estimate repeated. But iterating on the
interval width complicates the estimation of the demsity. The NN
estimate overcomes the problem of setting the bin size By determining
the interval width from the training samples. The number of training
pamples £ to be contained in a bin is specified, and the bin size
is determined by the width necessary to coantain this number of samples.
Different values of L result in different eastimate accuracies, but
vhatever percentage of samples for a bin is specified, the bin width
will be reasonable since it is determined by the diskribution of the
training samples. The density estimate presented in this chapter
combines the property of the NN estimate of nlacing the bins by the
training zamples with the low storage advantage of the fixed bin model.
Since the new density estimate has a step function form similar to the

fixed bin model and at the same time determines the bin widths from
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the training samples, the estimate is called the random bin density

estimate.

IV.1l Presentation of Random Bin Estimate

The random bin model attempts to place bins so that the pro-
bability of an observation falling in each bin has a specified value.
Usually the bins are positioned so 1t is equally likely an observation
will fall in any bin is illustrated in Figure I¥.1l. Let k+l be the
number of bins. The bin widthe are decermined so the probability of

an observation falling in any bin is i%i + Then

- 1 estimated width of i-th
£G) = o1 / [bin such that p(xei-th bin) = "E'i'i] for xei-th bin

(1Iv.1)

The bin boundaries are calculated from quantiles and quantile
estimates. The next few sections discuss quantiles, thelr estimates,
and a density estimate based on quantiles. The assumptions on the
data listed in Section I17.1 still hold in the following discussion.
The assumptions were that the samples are scalars, identically and
independently distributed in each class with sbsolutely continuous
distribution functions. Conditions for the density estimates dis-
cussed in this thesis to converge to the true density f(x) require
that f£(x) be continuous at x. By the asaumption of absolute continuity
of F(x), the number of discontinuous points of f(x) is finite in any
finite interval. Since in this report the purpose of obtaining

density estimates 1s to classify observations, a density is estimated
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only at values of a given observation. The probability of an
observation occuring at a discontinuity is zero. Thus, the assumption
of absolute continuity of F(x) is not restrictive for classification
purposes. The convergence conditions of the random bin density
estimate that will be presented in Theorem IV.2 also assume f'(x)

is continuous in a neighborhood of x and f(x) # 0 at x. Again,

as long as the number of points at which f(x) is not continuously
differentiable or f(x) equal to zero is finite in any finite interval,

the conditions are not restrictive.

IV.1l.1 Definition of Quantile

The p-th order quantile, labeled £p, of a distribution function
F(x) is any value of x such that F(xngp) = n, See Figure 1IV.2.
In this report, Ep is assumed to be unique for any p. Since x is
a random variable of the continuous type and hence F(x) is sbsolutely
continuous, the existence of Ep for any p is guaranteed. The further
assumption of the uniqueness of Ep means that F(x) is strictly increas-
ing in x.

IV.1.2 Set of Quantiles

For aony integer k, a set of k quant;les (€ 1 E g s eees £ K )

k+l ktl ktl
can be defined such that for any two consecutive quantiles ¢ | and E|+i
k+l ktl
F ) -FE,) "oy (1.2)
i+l i k+l )

ktl ktl

Figure IV.3 provides an illustration. Thus the set of k quantiles

9
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partition the sample axis so that the probability cf an observation

‘ 1
falling in any partition is el

1V.1.3 Definipg a Densitv~ from Quantiles

Let the X be a rando: variable with distribution function

F(x) and density f(x), and let £ 1° £ g s cer s £ K be a set

S

k+1 k+l k+l

of k quantiles. An approximation of f(x) is

0 x<E,
Y]
F(Ejﬂ)-l’(i _3“3
il BH :
fapprox(x) - 4 4 & 3 §g €x¢ ?iil
g e ktl ktl
- ° 'S
k1 (1y.3)

If X is known to be distributed over an interval (a,b) then £ (x)
approx

can be written as

r
0 X € a
FEE ;) /(€ | -a)
] sy asxc ‘5___1_
k+1.
P(Eyy)F(E, )
__ktl  kHl
fapprox™ = | TE,E L Erfi e gik-%
k+l k+1
[1-F(E )1/0:-%;k ) £ <xeb
sy Py —-k:—l
0 x>5b
\

By equation (IV.2}, the nuneratomsof equation (IV.3) are all equal to-E%I .
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If k is allowed to approach infinity and for any x one chooses from

the set of k quantiles (£ 1° £ 9 2 *0v s £ X ) the pair of quantiles
ktl  k+2 k+1
just below and just above x, the approximation converges to f(x). This

is showﬁ below:
Theorem 1: Let X be z random variable with an absolutely continuocus
function F(x) and with probability dersity function £(x). Let

(& 1° 13 9 gevesk " ) be a set of k quantiles from F(x). Define
K+l  k+1 k+1

x<by
k+1
1/ (k+1)
£ =
approx® = S T E, SRR
) b1 k+l k+1
\. ° *> by
k+l
(IV.4)
Then at all x for whick £(x) 1is continuous
lim £ (x) = £(x) g (1v.5)

ki  @PPTOX

First convergence of a2 more general form of equation (IV.4)
will be proved.
Lemma 1l: Let F{(x) be an absclutely conti;nuous function. For a
comstant x, let a, be a sequence of real mumbers such that o & x

and a, + x as k + o, and bk bg. a sequence of real mmbgrs such that
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bk > X and bk + x as k + o, Then at all x for which F'(x) is

continuous
F(bk) - F(ak)
lim b. - = F'(x) > (IV.G)
ko k- % '

roof: Since F(x) is absolutely continuous,

A¥

F(b, )-F{a,) b

A T\Pp)TERR, 1 I k

a S S F (u)dp . (IV.7)
k bkﬂak bk—ak a,

Subtractihg F'(x) from both sides of equation (IV.7),

b
- I (F u)-F' (x))au . (Iv.8)
k ak a

-F! -
AFk F'(x)

By the assumption of continuity of F(x) near x, for all € > 0 there

exists a 6: > 0 such that IF'(y)—F'(t)I < g if |y-t| < 6:' Given

an £, choose ke such that bk-ak < 62 if k 3 ke' Then it is observed thaF

lu-x|<s, if k > k and a €4 € b (remember a, < x € b,). The condition

Iu-x!<6€ and continuity of F' (x) imﬁly
PP - &) <e . (Iv.9)

Substituting equation (IV.9) in equation (IV.8),

|aF, - F'(x)] < 1 ka edy = € (1v.10)
k | bkfak a,

and so |AkaF'(x)| <edf k> k.. Thus for any € > 0, there exists

a k. such that |AF -F(x)| < € if k 3 k_, and Lemna 1 is proven.
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Proof of Theorem 1: Lemma 1 implies Theorem 1 if £ . in equation
k+1

£l+1 with bk' By construction

k+1

It remains to show that

(IV.4) can be identified with 3, and

of equation (IV.4), & i < x ¢ Ef+1°
k+1 k+1

+ x as k » «, It has been assumed that for any

&3 i1
k+1 k+1

p the p-th order quantile Ep is unique, and hence F(x) is strictly

+ x and

increasing in x. So & i £ x¢€ glil implies
k+1 k+1
F(«E_j_) < F(x) ¢ F(Elﬂ) . (Iv.11)
k+l k+1
1
Now F(EI+1)—F(€ 1 ) = oy For any € > 0, there exists a ke sugh
k+l k+1
1 .
that ) <gif k 3 ks' Thus
lim (F,l ) - F )= 0 . (1v.12)

letl k+1

Equations (IV.1ll) and (IV.12) imply

lim F(E ) = F(x) : {(1v.13)
e

and | | _
1im F(E +1) = FP{x) . (IV.14)
ko

Since F(x) is strictly increasing in x, equations (IV.13) and (IV.14)
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imply
lim £ = X (IV.15)
i
i e
and
lim £ =X . (IV.16)
J+1
2 el

The sequence ?_j;_ has the properties of ay and €I+1 those of bk’
kt+l k+l

and so Lemma 1 implies Theorem 1.

IV.1.4 Quantile Estimates
Equation (IV.4) presents a density appromimigfon containing

quantiles. If F(x) is unknown, the quantile can be estimated from
training samples. A demsity estimate can be constructed by replacing
the quantiles in equation (IV.4) with quantile estimstes.

The p-th order quantile of a distribution function F(x) can be
estimated from graining samples with order statistic theory. Let
n independent observations of a random variable X be arranged in

ascending order.

X, <E< e < x, . (Iv.17)
1 2 n
Relabeled the samples for convenience
yl - Xi » yz b xi » ss 9 yn - xi . (Iv.ls)

1 2 n
(y1°y2"°°’yn) ig, as is mentioned in Section II.3, & set of order

statistics. An estimate of the p-th ecrder quantile Ep is
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€p = Yinpl+l (IV.19)

where [w] is the largest integer less than or equal to w, If np is
an integer, choose any value in the closed interval between ynp and

ynp+1 since the distance between the two neighboring order statistics

ynp and ynp+1 tends to zero as n apprcaches infinity. A motivation

for Ep is that the fraction of sampies less than Eé is near p and
from order statistic theory (see Appendix II.3) E[F(gp)] = lﬂﬁ%%l_
which 1s approximately p. Rao [13] shows that the estimate Ep
approaches Ep as n *> © with probability one. The distribution of Ep

is shown by David {12] to be asymptotically Gaussian with mean Ep and

variance “BSEZBl_E. where for np equal an integer ép is taken to be
n[f(Ep)]
ynp to simplify the indeterminate case.
The set of quantiles ( i & 9 secs st K ) that appear in the
k1 k1 k+1

density approximation of equation (IV.4) can be estimated from equation

(IV.19)

E =y for j=1,2,...,k . (1IV.20)
iii [w13}+1
k+1

IV.1.5 Estimating the Density Function f(x)

~

If a set of k qﬁantile estimates (E 10 E g 3 et s E K )
k+1 kil k+1
determined by equation (IV.20) serve as the bin boundaries in the

random bin estimate, then each bin contains approximately the sime

number of training samples. The random bin density estimate is
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0 x < E 1
)
A~ 1 ~ A~
Y = —_— -
£@x Hl/(%-&-l £3) £y <x<by
L Y] FL
0 x> €y
)

(IV.21)

The following theorem shows that the random bin density estimate
cmmmw&nm@%ﬂuythtmehmnyﬁk+m and k/n + 0
as n > ®, For convergemce of %(x), the bin width must spproach zero
yet contain an infinite mumber of training samples. The conditien
k + % lets the bin width tend to zero while k/n + 0 allows the
number of samples in each bin to approach infinity. The need for

k >« and k/n + 0 2as n + ® can also be seen by inspecting

(k+1)(€,'j+1 - E ). The conditions k + © and n + © are necessary

ki
k+1 k+1
f'El’é,-»tJiA z d
or £,,, = 4 . Since giil - %di_ is multip;ied by k+l1 an
k+l  ktl k+1 k+1

k+l =+ ©, an additional condition of k/n + @ is needed in order that

both (k+l) and (E +1 -ﬁ ) converge at rates appropriate for

2 S I
k+l k+l
ry L — to converge to f(x).
k+1 k+l

In the proof of convergence of £(x) to £(x) in the following

theorem, a lemma is first developed that shows that E(x) follows
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asymptotically for large n a Gaussian distribution. The lemma shows

that since E , §=1,2,...,k, are asymptotically jointly Gaussian

3
k+1
~ ~ ~
the asymptotic distrib?tion of 1/f(x) = (k+1)(€]+1 -£ l ), which is
k+1 k+1

a linear combination of two Gaussian random variables, 1s Gaussian.
The asymptotic distribution of f(x) is then proved to be Gaussian.
The procof of the theorem concludes by showing the convergence of
£(x) to £(x).

Theorem 2: Let Xl’XZ""’Xn be n independent random variables
identically distributed as a random variable X with an absolutely
continuous distribution function F(x) and with probability density
function £(x). Let (Yl’YZ""’Yh) be the set of n order statistics

for (xl,xz,...,xn), and let £ ] = Y[ n J+1’ j=1,2,...,k(n),
k(n)+1 k(n)+1
where k(n) is a sequence of positive integers such that k(n) + «

and k(n)/n + 0 as n » ©, Define

( 0 x < E 1
k(n)+1
- _-l——— _A ~ A
£(x) = ¢ k()L /@j+l & 4 ) E 3 & <l
k(n)+l k(n)+t k(n)+1 k(n)+1
\ 0 x >E k(n)
k{n)+1l

(1v.22)
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Then En(x) is a consistent* estimator of f(x) at all x in the neighbor-
hood of which f(x) and f'(x) are continuous and £(x) ¥ 0.

Before the theorem is proven, the following lemma is developed.
Lemma 2: The density estimate gn(x) defined in Theorem 2 follows
asymptotically a Gaussian distribution.

Proof of Lemma 2: First, llgn(x) will be shown to be asymptotically

Gaussian. If s quantiles & , & ,+.., £ are estimated by

P P Pg
equation (IV.19) and f(x) is differentiable in the neighborhood of
E_ , then the 8 quantile estimates E » E ssoey E follow asymptotically
an s-variate Gaussian distribution [12] with means

EGEpi = Epi , (1IV.24)
variances
a p, (1-p,)
varc(ip ) = 7 (1Iv.25)
i n(f(€_ )]
Py
and covariances
1=
cov (E ,E )= .-Biﬁ Py) , 1<, (1V.26)
G*’p,"p nf(€_YE(E_ ) )
1 P L

*Let xl,xz,...,xn be n indepvndent random varisbles identically
distributed as a random variable X with distribution function
}Kx). §(XI,X2,...,Xn) is a ccnsistent estimator of 6 if |
e(xl,xz,...,xn) converges to 6 as n + », Convergence in this
report is shown in probability.
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A subscript G has been used to indicate that these are the means
and variances of the asymptotic Caussian distribution since the
means and variances of the asymptotic distribution of a randem
variable are not necessarily equal to the limits of the actual
means and variances of the variable. Letting s=2, Py =

—
kin)+1l
+1

and P, = ﬁ?\_)—-ﬁ , then (k{ad+1) (€i+1 —€ 1 ) is a linear
k(n)+l k(a)+i

combination of two asymptotically Gaussian random variables and so

is itself asymptotically Gaussian with mean

-

N

41 7h g Y RMEDE L, <8 ) (IV.27)

k(n)+l k(n)+l k(n)+l k(n)+1

Eq(k(m)+1) &

and variance

varG[(k(n)+l)(g e =£ 4 )]
k(n)+l k(n)+l

2 . .
- LD pvaro €, ) 2eovg€ L €, )
k{n)+1 k(n)+1 k(n)+1

+ varc(g l )]

k(n)+1l
2 [ AL - I, i a-
_ (k(n)+1) k(n)+1 k(n)+1 _ o k(a)+1 I;E@)H. |
n 1 4¢3 )y
{£(E )] i s
J.__._k%('im k(m)+l  k{m+l
. k(n}+1 “""’k(n)ﬂ . (1v.28)
[£(E ! )]

k(n)+1l
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These two equations are actually the asymptotic means and variances
of llfn(x). Before finding the asymptotic mean and variance of

fn(x), it will be shown that varGG:AL——) tends to 0 as n + =,
£f (x)
n

This will be shown by expanding the terms in equation (IV.28).

N
By definition of quantiles, K (n)+1 F(E ] } and

k{n)+1
E?%§%I = F(E +1 ) . For convenience, let hl = x - £ | and
k(n)+1 k(n)+l
h2 = f 41 % F(x—hl), F(x+h2), f(x—hl), and f(x+h2) can be expanded to
k{n)+1 9
hy g
F(x-hl) - F(x)—hlf(x) +-§— £'(6) 'E?;%;T <@<x,
(1IV.29)
hz
F(xth,)) = F(x)+h,"(x) + 5= £'(9) x<h<E Ly
k(n)+1
{IV.30)
1 1 f'gxz
= + h g <y <x
f(x-h,) £f(x) 1 2
1 [£()] O
(IV.31)
and
1 1 £' ()
= - h _ x<U-< E
f(zth,) £(x) 2 2 i+l
2 [£(u)] K (n)+1
(iv.32)

After substituting the above four equations into the expression for
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var, (3 )} in equation (IV.28) and performing algebraic manipulations,
£ (x)
the varG(A1 ) becomes
£ (x)
2 (h,+h,)
1, . (kin)+l) 1 2 2 2
var, (—=-) = ey ¢ 0(h)+ O(hj)+ O(hlhz)} .

f(x)
(Iv.33)

Now an expression for (ki(n)+1) will be found. Upon subtracting

equation (IV.29) from equatiom {(IV.30),

F(xth,)-F(x-h,) = £(x) (h +h,) + O(hi) + O(hg) (IV. 34)

Since F(x+h2)—F(x~h1) = 1/(k{n)+1l), it is found after algebraic
manipulations that
K(n)+l = i { 1 } . (IV. 35)

B2 E+HO(MD0(63) 1/ (h +hy)

Substituting this expression into the varc[llfn(x)] in equation (IV.33),

A k(n)+1 1
var,[1/f (x)] = { I
G 'n n ¢ (x)+[0(hi)+0 (h‘;) 1/(h;+h,)
0(h?)+0(h2)+0(h h,)
o 1 + 1 2 172 }
f (%) h1+h2 .

(1v.386)

Equatious (IV.15) and (IV.16) in the proof of Lemma IV.1l state that

£ l + x and £ j+1

k{n)+1 k(n)+1

+ x as k{n) + », and =0 h1 + (0 and h2 + 0

as k(n) + «. Since k(n)/n + 0 as n + =,
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1im varG[J./?n(x)] = 0 (IV.37)
} Cmated

Now that the asymptotic distribution of llgn(x) has been
found and it has been shown that varG[llgn(x)] <+ 0 as n + «, the
asymptotic distribution of 'f‘n(x) will be obtained by the following:
Le@na (pav:l.d [17])): Let xl,xz,...,xn be n independent ran&om vafiables
1dentica;1y distributed as a random varizble X. Then tj(xl’x2’°"’xn)’

j=1,2,...,m, are m random variables that are functions of (XI,XZ,...,Xn).
Yf the random variables tj(xl,xz,...,xn), j=1,2,...,m, have asymptotically an

m-variate Gaussian distribu~{on with means uj, variances di which tend to O

as n + «, and covariances 0,,, and if gj(tj) are single-valued

ij
functions with nonvanishing continuous derivatives g}(tj) in the

nexzghborhoods of t, = uj, then gj(tj) themselves have an m-variate

h
Gaussian distribution with means gj(uj) and covariance oijgi(ui)gECuj).

A

1
e MR i =
k(n)+l k(n)+1
(k(n)+1) (£ 41 T £ N ) and since £(x) ¥ 0, the transformation
k(n)+l k(n)+1

Withm =1, t = (k(n)+1)(€

g(t) --% satisfies the conditions of the lemma, Since g'(t) -1;5 ’
t
?;(x) is asymptotically Gaussian with mean
Eefa® *oms /€ € 4 ) (1v.38)
G n k(n)+1 1+1 i )

k(n)+1 k(m)+1

and variance

varg[£ (x)] = [F(;%—_q /(g 41 ~ & )]4var[1/?n(x)] . (1Iv.39)
k(n)¥1  k(n)+l
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Theorem 1 states that

lim 1 =
k{n)+1 k(n)+1
and so

lim EG§n(x) = £(x) . (IV.41)

n->e

Further, since varc[l/g(x)] 2> 0 as n+ @,

1im varG[fn(x)] = Q (Iv.42)

-0

Lemma 2 has been proven.

Proof of Theorem 2: From Lemma 2, fn(x) follows asymptotically the

Gaussian distribution ¢n(u) with mean Ec(fn(i)) and variance

vargig(X)],

u-EG (% n (Z) )
(*i-'eurG[’f‘m(:i:)])1/2

e—1/2 v2

¢n(u) = dv . (iv.43)

1
VZr

From Lemma 2, EG(gﬂ(x)) + f£(x) and varGIfn(x)] + 0 ag n* , g0

—0 u < £f(x)

w-E. (f (x))
1lim € =

- 173 = 0 u = f{x) (IV.44)
N (varcifn(x))l)

o u > f(x)
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0 u < f(x)
lim & (u) = % u = £(x) (IV.45)
N0
1 u > £(x)
Define
. 0 u € £(x)
F(u) = (1V.46)
1 u > £(x)

The Jimit of @n(u) as n + < equals F(u) at all points for which
F{u) is continuous. Since @n(u) is degenerate at v = £(x) in

the limit, fn(x) converges in probability to f(x).

IV.2 Restatement of Algorithm for Random Bin

Density Estimate

This section presents a concise summary of the procedure for
finding the random bin density estimate from n tfaihing samples.
1.) Calculations performed with the training samples:

a) order the n training samples

Yy < Yy < .40 < Y, (1V.47)

b) estimate k bin boundaries

e 42

(g =Yy ’
1 n 2 e 20
1 et wmr et

yeses E R ) . (1V.48)

’ g |
j kn
e g e g

k+l

-y
in
[k+1]+1
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b.) then

e i

E(x)

equation (IV.48):

a.) find and giil

k+l

Iv-21

such that

1 ” N
w1 / Crt )
k+l ki#l

1 el
i //’(b - ;_E;?
k+l

By storing the k bin boundaries, the entire density estimate is

stored so that f(x) can be estimated at a later time on line.

2.) Calculations performed to find %(x) from the bin boundarias in

x < a
asxe E 1'
k+1
3 i % X £ €l+1
kt+l k+1
£ k £x<b
k+1
®>Db

(IV.49)
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IV.3 Comparison of Random Bin Density Estimate with Other Estimates

Section II1I.1 stated that density estimates generally are of

p{x £ interval A)
width of A

and the numerator estimated or the numerator is specified and the

the form , and either the denomipator is specified
denominator estimated. The random bin model is of the latter type
and so is similar to the NN estimate. Doth estimate the interval
width from the training samples. The random bin model is similar
to the fixed bin model in that it is a step-function. In the random
bin and fixed bin models, the density function is estimated for all
x at oncé, and the total estimate is stored. Table IV.1l lists the
properties of the random bin model and the three models discussed in
Chapter II1I. Table IV.1 is similar to Takle IXII.l with the random
bin estimate added. The remainder of this chapter discusses the
estimates in more detail.

IV.3.1 Storag

e and Computation Requirements of Density Estimates

The storage and computation requirements of a density estimate
can be divided into two parts. One part, to be called or-line, is
for the storage of the data needed at the time of a classification
decision and the amount of calculations required to make the decisioa.
The other part, called off-line, is fer any preprocessing that may be
necessary before the data is stored for later use in a classification
algorithm.

'As an example of how off-line and on-line storage and processing
might be utilized in practice, consider the EEC signals discussed in

Section 1I.2. A possible decision problem is to determine from EEG



Properties Influenced by Factor 1
Factor 2 In £{x)=p(xeA)/A
|| denominator numerator Difficulty Convergence
Total Single specified, specified, of bin size conditions as
Point Point numerator denominator choiceé # training
Estimate™ | Estimate estimated estimated more less sampleso
Bin Width 1 specified bin
Set by Random NN / Y width=+0 at such
Training Bin 17,183 a rate that #
Samples samples in bin»w
Factor 1 —
Fixed # samples spec-
Bin Bin Parzen ; ified in bin»®
Width 19,20 16,18, 4 v at such a rate .
Specified 21,22,23| 24 that bin width>0

Properties Influenced 1. In Total Point Estimate, the density function is

by Factor 2 estimated for all x at once, and the total estimate
is stored.
I e
s bin centered at x? n:s Y / 2. In Single Point Estimate, all training samples are
4 stored and the density is estimated separately for each x.
Storage requirement small v 3. These numbers indicate references in the bibliography.
: large v

4. When the bin width is specified, there is a problem of
how to choose it initially so as to contain a number of

Computational complexity training samples that would give a reasonable estimate.

for any x iﬁ:: Y J/ In letting the training samples set the bin width, a reason-
able estimate is more readily obtained.

Accuracy immdeterministic 5. The number of samples specified in the bin+» but a rate

Rense less v sufficiently slower than the total number of training

more 4 samples+® in order that the bin width that contains the

specified number of samples-(0.

Tail region problem yes .

no v

TABLE IV.X Properties of Fixed Bin, Parzen, NN, and Random Bin Density Estimates

£Z-Al
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measurementg the state of consciousness of a pat;ent undergoing
surgery. The information on the patient's state of consciousness
would determine the amount of anesthetic to give the patient.
Calculations on the EEG measurements to determine the density functions
necessary for such a decision could be performed off-line before the
surgery when large computer facilities would be available. During

the operation, the testing on the patient’'s state of consclousness
could be done cn-line with small information storage faclilities being
required.

When'the density estimate 1s a step-function calculated for all
x at once as in the random bin and fixed bin models, off-iine pro-
cessing is necessary. But the on-line storage requirement of these
estimates is small as only the bin boundaries and step-function
values need be stored, and the on-line calculation of the demsity
estimate for any x iz simple because only the bin in which x lies
needas he found. The Parzen and NN models have no off-line processing.
But the on-line storage requirement is large since all training
samples are stored, and more on-line calculations are required as the
bin is centered at x every time an estimation is made.

As mentioned in the previous paragraph, the random and fixed bin
estimates require off-line storage. In the fixed bin model, the
fraction of training samples iq each bia is calculated, and each
traiﬁing sample may be discardéd onee the biﬁ in which it lies has been

found. 1In the random bin model, the training samples are ordered
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and all samples must be stored during the placement of the bin
boundaries. Thus the off-line processing requirement of the random
bin model is larger than that of the fixed bin model. The fixed
bin estimate is also easier to update with additional samples.

IV.3.2 Bin Placement

In the random bin and NN models, the interval positions are
determined by the training samples, while in the fixed bin and
Parzen models, the interval positions are specified before train-
ing samples are known. When the intervals are specified beforehand,
a bin may contain a4 very high proportion of the samples; it may be
necessary to change the interval and estimate the density again to
increase the accuracy.

The centering of the bin at x in the NN and Parzen estimates
provides more deterministic accuracy. The random and fixed bin
models do not center their bins at x, but the decreased deterministic
accuracy is traded for smaller on-line storage and processing require~
ments.

Properties of the random and fixed bin models can be combined
into one estimate. The bin boundaries could be placed by some of th.
training samples, then the bins could be taken as specified and the
fixed bin method applied to the other samples. Such a mixed estimate
would combine the two modes of density estimation, which are either
specifying the denominator of 2£¥;§E%%E§§!§l—4gl and estimating the
numerator or specifying the numerator and estimaging the demominator.

The mixed density estimate would operate in each mode ome at a time.
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Sebestyen and Edie [27] have formulated a density estimate
that is one possible way of combining the two médes of density
estimation mentioned in the previous paragraph. Sebestyen and Edie
determine both the number of bins and bin sizes from the training
samples. The estimate iz a step-function. First, an initial set
of bins is chosen. Then by applying the training samples, some
bins are enlarged and some reduced, and some new bins are created
and some old ones combined. The flat parts of the density function
are approximated by a few, large bins, and the rapidly varying
parts by‘mnre, smaller bins. The motivation of the estimate is

to minimize the mean square error

r (£ (x)-£ (x)) 2ax (1V.50)

and require little storage.

Figures I1I.4 a,b, and ¢ show an illustrative comparison of
the estimates of Sebestyen and Edie, fixed bin, and random hin.
The Sebestyen and Edie method appears to come the closeat to minimizing
the mean square error. But since the density function estimate is to
be used to classify observations, it scems more appropriate that the
estimate should have greater accuracy where observations are more
likely to occur. In other words, the estimate should be mere accurate
ncarer the peaks of the density. Rather than trying to minimize the

mean square error, a more appropriate criterion is to minimize
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£(x) F(x)
Sebestyen and Edie
nt
- X
FIG. I’L. 4a
A
f(x) f(x)
/1/ Fixed bin
/ - \
_.-174 : :-.
- X
FIG. IZ. 4b
Random bin
- X

FIG. I. 4c¢

Comparison of Density Estimates of Sebestyen
and Edie, Fized Bin, and Random Bin
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r (f (x)-£ (x)>2f (x)dx . (1v. 51)

Equation (IV.51) weighs more heavily the higher values of the
density function where more observations are likely to occur.
Since the random bin mecdel places the bins so each bin contains
apiroximately the same mumber of training samples, more bins are
concentrated where more samples occur and the model comes closer
to satisfying equation (IV.51). It is of course possible to vary
the random bin model ss presented in this thesis and to specify
differené numbers of training samples for different bins.

IV.3.3 Tail Region Problem

A problem arises with step—-function estimates when the random
variable X is distributed over the interval (~=,»), If f(x) is
estimated for x less than the lowest bin boundary or greater than
the highest bi.: boundary, f(x) will be zero. For example in the
random bin model in equation (IV.21), E(x) = 0 for x < § 1 ©°f

X > E Kk ° Figure IV.5 illustrates this occurance. If gglestimate

of £(x) is all that is desired in the tail regiona, then £f(x) = 0

-
is a reasonable estimate. A problem occurs when f(x) becomes part of an

estimated likelihood ratio %(xlcz)/%(xlcl) as is the case in the
| estimated version of the Wald sequential probability ratio test
to be presented in the next chapter. When a string of t observaticns
has been taken apd X, results in either f(xtlcl).E 0 or f(xtlcz) = 0,
the likelihood ratio of the t observations will be zero or infinity, and
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/dﬂb‘ f(x)
f(x)=0 // \/\wf(x) flx)=0
) Ny
A A A -
g"im Ez/m Ek/k-ﬂ
FIG. IL.5

Tail Regions of Random Bin Density Estimate



Iv-30

will cause a decision to be made immediately regardless of the previous
observations. This phenomenon leads to more error decisions in the
sequential test to be presented than should be allowed by the specific
error probabilities. The reason is that a dv-'sion is made on the
basis of only the one observation. The likelihood ratio ignores
previous observations, gnd the test does not evaluate enough obser-
vations for the error rates to be small. This tall region problem, as
it will be called in this thesis, is discussed further in Chapter V
when the estimated version of the likelihood ratio is presented.

The Parzen and NN models avoid the tail region problem since
their density estimates are continuous in x.

IV.3.4 Conclusion to Comparison of Density Estimates

Table IV.1 1s again recommended for a comparison of the various
estimates., The next chapter explores the use of the random bin
estimate in an estimated SPRT. The random bin model is chosen because
of its small on-line storage and processing requirements and its

placing of the interval widths by the training samples.
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Appendix 1IV.1 - Discussion of Convergence Proofs of Density Estimates

This appendix discusses some factors involved in showing con-
vergence of density estimates. Parzen [16] shows convergence of his
estimate in the mean square sense. Loftsgaarden and Quesenberry [17]
show convergenze in probability, and this report shows convergence
of the random bin density estimate in probability. Mean square
convergence is a stronger form of convergence, and in fact it implies
convergence in probability. The reason that convergence of the NN
and random bin models has been shown in probability appears to be
that their structure makes convergence harder to prove (it should be
noted that it has not been shown that they do not converge in the
mean square sense or with probability one).

The basic form of a density approximation is

p(obserzation £ A) ] (Iv.1.1)

As mentioned in Section I1I11.2, a density estimate can either specify
the denominator and estimate the numerator or specify the numerator and
estimate the denominator. The Parzen model estimates the numerator,
and the NN and random bin models estimate the denominator. Because

of this, it is more difficult to find the means and variance of the

NN and random bin models. Estimating the denominator of equation
(1Iv.1.1) means estimating the interval width that contains a specified
fraction of the training samples. Distributions of order statistics

are involved, and it is difficult to calculate the variance of interval
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width estimates from the densities of order statistics. Estimating
the numerator of equation (IV.1l.1) involves estimating F(x+h) -
F(x~h), which has a variance that is easier to find.

To illustrate the factors discussed in the preceding paragraph,
some examples will be given of the type of calculations involved for
finding the variances of density estimates. Let the density estimates
be based on xl,xz,...,xn where xl,xz,...,xn are independent random
variables identically distributed as the random variable X with
absolutely continuous distribution function F(x) and with probability
density function f(x).

The first density estimate Parzen considers is

" S (x+h)-S_(x-h)
£ (x) = n n
Parzen 2h

(1Iv.1.2)

where Sn(x) is the fraction of samples less than x. The covariance

of Sn(x) and Sn(x') is [ 14]
cov(s_(x),5(x")) = = [F(min(x,x"))- FGIFx"] .

For the general Parzen estimate

1 n X-x;
foarzen™ = if jzl K(+—) » (IV.1.3)
Parzen shows that
lim nh var[fn(x)] = f(x) J“ Kz(y)dy o (IV.1.4)

n-»o

It is evident that the limit of the variance of Parzen estimate can
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be found and mean square convergence can be shown.

The NN density estimate is

~

2~1
f@® = o /2]x=x | (Iv.1.5)

where X, is the £-th nearest sample to x. The NN estimate involves
order statistic theory. In making calculations on the NN estimate,

the type of density function involved is that of the k-th largest

sample Yy whose density is

n.

-1) ! (k) ! fl‘F(Yk)ln_k[F(yk)]k_lf(yk) . (IV.1.6)

The random bin estimate is

e

1 o~ o~ ~
fRandom(x) ﬁ-E;I // (gitl-gdi_) for E_i_.< x < ?iil (Iv.1.7)
bin ktl Kkl k+1 k+1

where £ = is the estimate of the p-th order quantile .
&0 = Vinpl+1 e P q &
The random bin estimate also involves order statistic theory,

and the type of density function used for making calculations on

the random bin estimate is that of the joint density of ép and Eq,

which is

n. IS L I R S R St ¢
@=DTG-=D T (=3)" [F(Ep)] [F(Eq) F(Ep)]

~ n- j A ~
°[1—F(sq)] f(Ep)f(Eq) (IV.1.8)

wvhere p < q, i = [np]+l, and j = [nql+l.
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Since it is difficult to find explicit expressions for the
variance of random variables with density functions in equations
(Iv.1.6) and (IV.1l.8) and with F(x) and f(x) unknown, explicit
expressions for the variance of the NN and random bin estimate
are even more difficult to find. Thus the convergence of the
NN and random bin estimates has been shown in probability by
methods that do not involve finding explicit expressions for the

variance »f the estimates, such as using asymptotic distributions.
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CHAPTER V

ESTIMATED SPRT

Cirapter IV developed a demsity function estimate with the intent
of utilizing it in a classification procedure. This chapter discusses
the Wald sequential probability ratio test (SPRT) and then forms an
estimated SPRT with the random bin density estimate. The SPRT has been
chosen since the decision problem involving the EEG responses
discussed in Section I.2 is particuiarly well suited forva sequentialnéest.
Also a SPRT with density estimates presents some additional interesting
problems which occur only infrequently in tests that decide on the
basis of only one observation such as the Bayes decision ruie. Some of
these problems that will be investigated in this report are estimating
densities in the tail regions and estimating densities of dependent

observations.

V.1 Review of SPRT

A well-known sequential test is the Wald SPRT {4,28,29]. 1In the
SPRT, the error probabilities are specified
43 & p(error of type I) = p(decide 02|01 true)
B & p{error of type I1) = p(deeide Cl|C2 true) (v.l)

Defipe the likelihood ratio of t observations

f(xl,xz,...,xtlcz)
L(X,,X 5000, ) = (V.2)
172 € f(x,,x X ICl)
1272777 *%¢
and two thresholds
- 1-8 -8
A== B = l1-a ° ¥v.3)



The operation of the SPRT is as follows.

1,) Take the first observation X If
L(xl) £ B decide C1
B < L(xl) < A observe the next observation x2
. 2
L(xl) 2 A decide C

2.) 1If another observation is taken, say the t-th observation Xos

1
L(xl,xz,...,xt) £ B decide C
B < L(xl,xz,...,xt) < A observe the next observation X
‘ . 2
L(xi,xz,,..,xt) 3 B decide C

3.) Repeat step 2 on the next observation until a deéision is made.
The SPRT takes » w observations until the information contained in the
string of observations is sufficient that the probabilities of type I
and type II errors in making a decision are equal to the specified values
o and B respectively. The SPRT has the property that among all tests
for which o and B are specified, the SPRT requires the smallest number
of observations, on the average, to reach a decision [2,29].

When the observations x, are independent, the likelihood ratio can

be written as

f(xllcz)f(lecz)---f(¥t|C2)

sesosX, ) =

2 t (¥.5)

L(x,,x
1 f(xllcl)f(lecljo--f(xtlcl)

1
For convenience, in the remainder of the report f(xlC )} is written
fl(x) and f(x]Cz) is written fz(x).
| The SPRT obtains the information contained in a string of observations

by evaluating the density functions of each class at the observation



values. Knowledge of the density functions of each class are required
for the SPRT, and so the test is not directly applicable to the case
where the only prior knowledge is that of training sets.

Fu [30] has developed a partially distribution-free version of
the SPRT that uses the training samples of only one class, sav Cl. If
the samples from Cl have an arbitrary distribution function F(x),
then the samples from C2 are assumed to have the Lehman alternative
distribution, which is Fr(x), r>0. After each observation from the
unknown class is taken, two sets of samples are formed -- one from
samples ef C1 and the other by alternating samples of C1 with observations
from the unknown class. The samples of bhth sets are ordered, and the
density functions of the two ordered sets are found. By assuming the
distributions of Cl and C2 are F({x) and Fr(x) respectively, the ratio
of the densities of the two orderings is independent of F(x). This new
ratio of densities is used in the SPRT to determine 1f the second ordering
contains only samples from C1 or samples from both Cl and C2. Fu has
used training samples from only cne class and has assumed the distribu-
tion of C2 is Fr(x), r > 0, where F(x) is the distribution of Cl.

The method presented in this chapter uses training samples from
both classes and forms an estimated likelihood ratio for use in the SPRT
from estimates of the density functions of each class. The method is dis-

tribution-free in that it does not require any knowledge of fl(x) and fz(x).

V.2 Random Bin Estimate in SPRT

V.2.1 Presentation of Random Bin Estimate in SPRT

Since the density functions fl(x) and fz(x) are unknown, they can

be estimated from training samples of each class, and an estimated



likelihood ratio can be formed

~

£, ()8, (%)) o+ £, ()

f.(xl,xz,... x,) = . (V.6)

~ (4] ~

fl(xl)fl(xz)---fl(xt)

Let
ny be the number of training samples in class 1,
n, be the number of training samples in class 2,
kl be the number of quantiles for fl(x),

k2 be the number of quantiles for Ez(x),

£ I . j=1,2,...,k1 be the kl quantiles for fl(x)” and
k.+1
1
n i >y j=1,2,...,k be the kz quantiles for fz(x) . v.7)
k,+1
2

The estimate of L(xl,xz,...,xt) formed from the random bin density

estimate is

. £ (x)E, (x,) 0 £, (x,)
L(xl,xz,...,xt) = A2 1 A2 2 A2 t (V.8)
fl(xl)fl(xz)---fl(xt)

where

~

£y =g //€py £ ) for £, € x € £y (V.9)

1 +1 o k,+1
ky k,+1 k+1 k1

and

~ l ~ ~ ~
£,(x) -k2+1/(ﬁ2+1 g ) for N, < m < M. (V.10)

k1+1 k1+l k1+1 kf+1
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If kl = k2 = k, the computation of L(xl,xz,...,xt) is reduced
since

27 g - ) /ey =M g )

f (x.) j+1 2+1 £

1Y k1+1 k1+1 k2+1 k2+1
~ ~ ~ ,
where E . < X, £ £ +1 and n ) 4 £ Mgty . (V.1l1)
k1+1 k1+1 k2+1 k2+l

-~

Since fi(xl), fi(xz)”"’fi(xt) are estimated from the same

training samples, fi(xl), Ei(xz),...,fi(xt) are in general dependent, i=1,2.

So
E[fi(xl)fi(xz)"'fi(xt)]# Efi(xl)Efi(xz)---Efi(xt),
for i=1,2 (V.12)
and L(xl,xz,...,xt) is & blased estimator of L(xl,xz,...,xt).

But the next section shows that f(xl,xz,...,xt) converges in
probability to L(xl,xz,...,xt) as n; -+ o agnd n, + ®© and is thus
a consistent estimate (see also conclusion to this chapter).

V.2.2 Convergence of Likelihood Ratio

Theorem 3: Let xi,xg,..,,xi » be a set of independent random

1
variables identically distributed as the random variable Xl with absolutely

continuous distribution function Fl(x) and with probability density

2 2 2

function fl(x), and let xi,xz,...,xn be a set of independent random

2
variables distributed as X2 with Fz(x) and fz(x) similarly defined.

Let fl(x‘ e an estimate fl(x) and fz(x) an estimate of fz(x)



where the estimates are defined in Theorem 2 of Chapter IV, Define

. BB, ) Ehy )
L(yl,yz,...,yt) = = " ~
£,0)E,(r0) £y )

Then i(yl,yz,...,yt) converges in probability to

fz(yl)fz(y2)°"f(yt)

L(ylsyzi' LR ’yt) =
\'F - 0 &
as n <+ « and n, + o for all D STISE N in the neighborhood of
which fl(x),fi(x),fz(x) and fé(x) are continuous and fl(x) # 0
and fz(x) ¥ 0.
Proof: From Theorem 2, %l(yi) converges in probabiiity to fl(yi)
as n, + and fz(yi) converges in probability to fz(yi) as n, + .
The proof of the corollary follows directly from the theorem from
Krickeberg [31] that 1f the sequences of random variasbles En’ Masetes Py

converge im probability to &, n,...,p then the sequence g(gn’nn’°"pn)

converges in probability to g(£,n,...,p) i1f g is a continuous function

and g(E,n,...,p) is finite.

This section has proposed an estimated SPRT where the likelihood

ratio is formed from random bin density estimates of each class. The
estimated likelihood ratio of independent observations: was shown to
converge in probability to the true likeliheod ratio. The remainder

of this chapter discusses the application of the SPRT to classification

problems.



V.3 Tail Region Estimation Problem in the Random Bin SPRT

One difficulty that occurs with a step-function density
estimate such as the random bin model is the estimation of the tail
regions of the density function. As an example of this problem,
consider two overlapping density functions as illustrated in Figure
V.1l with their possible estimates in Figure V.2. Assume that an
estimated SPRT is being performed and that after t observations no

decision has been made. Thus

Fal
B < L(xl,x ‘.,xt) < A .

2*°

Suppose further that the observations to be classified belong to

class 1 and that the (t+l)-th observation is greater than é Ko

rrr——

k+1

This means that ?l(x ) = 0 and so

t+1

[NCI
: 27t
) = L(xlgxz,--cht) ( ) m o < A -

i(x 3XnsonssX, oX
172 t 141

t+l

A wrong decision that the observations belong to class 2 is made.

Since fl(x )} = 0 for any X1 > K * @ decision of class 2 is

t+1
k+l
made for any Xeal > E k However, if the actual demsity functions
w £a(®esr)
are known, it is possible that the ratio ————— > B for
£1ear)

and that the ratio fz(x ) is sufficiently

%41 > by e+ E1 ey

k+l

small so

fz(“t+1)

B < L(RysXnpooesX,sX, ) ™ L{X,3Xny0005X ) < A .,
1*72 S S L 5 § 1°72 t fl(xt+1)



f(xIch f(x|c?2)

~F— X
FIGURE 1.1
Example of Two Overlapping Density Functions
A A
f(xic") f(x|c?)
X
r-—-- ==
' I : |
—1 - v =
1 I : I I
I | | |
J [ L.I i | . : | I
T ; I | | | r=—"-="7=7° I
1 i | I I | I i
] i 1 I | | | I » X
A A A A 2 A
3 2 [ e k e
k+1 k41 k+1 k+1 k+1 k+1
FIGURE 1X. 2

Example of Two Overlapping Random Bin Density Estimates



Thus it is possible that after the (t+l)-th observation where

~
X > £

e+l the estimated SPRT decides class 2 and the true

k
k+1

SPRT makes no decision. Estimating the tail regions of a density
function to be zero causes more classification errors than desired.

When El(xt+1) = 0, a decision is based on only the one observation

Xe41d the information contained in the previous t observations is

neglected. The same difficulty is encountered when classifying

-~

observations from class 2 that are less than n 1 ¢ Experimental
k+1
results appearing later in this chapter verify that the tail region

probler does result in more classification errors than would be
expected from the specified error probabilities., A step-function
estimate does not cause excessive classification errors on obser-
vations between the tail regions since the likelihood ratio is not
zero or infinity. Consequently a decision is not automatically
made from the information supplied by the one observation.

The tail region problem occurs mainly when several observations
are considerecd at once. If a classification process decides on the
basis of only one observation, such as the Bayes decision rule, then
estimating the tall regions to be zero may be acceptable. Since no
information additional to the one observation is to be taken, no
information is ignored by the likelihood ratio being zero or infinity.

Two techniques for handling the tail region problem are discussed
in the next few sections. The methods either estimate the tail

regions differently or vary the SPRI.
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V.3.1 Requiring Several Observations to Fall in the Tail Regions

One solution to the tail region problem that has worked
experimentally treats the observations from the tail regions separately
from the likelihood ratio. The method makes a decision of class 2

if r observations fall greater than E K refer to Figure V.2, and

k+1
a decision of class 1 if r observations fall less than ﬁ 1 Only
k+1
obgservations between 3 1 and E x are included in the likelihbod
k+1 k+1

ratio. A decision about a string of observations is made in one of
two ways, eilther by the likelihood ratio of observations between

ﬁ 1 and 2 k falling outside the thresholds A and B, or by the
k+1 k+1
number of observations less than ﬁ 1 equaling r or the number of
k+1
observations greater than E x equaling T.
k+1
The motivation for this solution to the tail region problem

is that more observations are used in the decision process if r
observations rather than one are required to fall in each tail region
before deciding. With an increase in the required number of observatioms,
the decision is more likely to be made by the SPRT rather than the tail
region test, and the combined test is likely to be more accurate. The
error rate is decreased by increasing r, but the average number of
observations required for a decision is increased. If r is made very
large, éﬁe observations in the tail regions do not contribute at all

to the decision process.
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A disadvantage of the tachnique presented in this section is
that the tail region treatment departs from the likelihood ratio

Fal

method of the SPRT. Since observations bhelow a 1 or above £ K

k+1 k+1

are not included in the SPRT structure, the error probabilities of
the altered test may differ from thosespecified in a standard
SPRT. The next section presents a method that estimates the tail
regions with a different density estimate and preserves the SPRT
structure for all observatioms.

V.3.2 NN Tail Region Estimate

Another way of handling the tail region problem is to employ
the nearest neighbor (NN) density estimate of Loftsgaarden and

Quesenberry explained in Section III.4.1, The NN estimate is

fx) = &LE%:E // 2| x-x% (v.13)

R.(n)|

where n is the number of training samples and xl(n) is the 2{(n)-th
nearest training sample to x according to the distance measure
|x-y|. This estimate is continuous in x and tends to zero only as
x approaches infinity. Disadvantages of the estimate are that all
training samples must be stored and the 2(n)~th nearest sample to
x must be found for each x.

The NN estimate, however, can be used to advantage in the tail
regions. For any observation x below a certain value, the same training
sample is always the f-th mearest sample to %, and the same is true

for any x exceeding & certain value. Figure V.3 provides an illustration



For any x <

sample

Yy Yy

Yna*¥
For any x > —1,

2 ? ‘_'l e 2
Y4 is 4-th nearest Yn-3 IS 4-th nearest
sample
% > H——3¢ 'I/L X ¢ %
4 Y2 Yz Yq Yn-3 | Yn
2 2
FIGURE M.3

Nearest Neighbor Density Estimate for Tail Réegions

¢I-A
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with 2 = 4. Let Vs gseres¥y be a set of n ordered training samples.,
For any x less than the midpoint between Yy and Yos» Yo is always

the £-th nearest training sample to x. So the NN density estimate

Y1+yz
for any observation x < 5 is
~ 2-1
£(x) = = / 2]xy,| (V.14)

The estimate in equation (V. 1l4) is greater than zero in the tail
regions., The values of ) and the midpoint of Y, and y, are the
only information that needs to be stored for later use of the density
estimates of the tail regions. At the upper tail of the density,

Y re1-4, is always the 2-th nearest sample to any x > (yn+1"1+yn)/2'
So

A 2- Yat1-2tY
f(x) = —;l-// 2|x—yn+1_£| for x > —Eﬂér——"g

(V.15)

The random bin density estimate with the NN tail region estimate

-~

E 1 =Yg where £ = [k+1] + 1 (see
k+1
equation (IV.20)) is the smallest bin boundary. For any x < a é

is illustrated in Figure V.4,

~ ~

(y1 + £ 1 /2, & L =Yy 1is the 2-th nearest training sample to x.
k+1 k+1
Similarly E =Y +1-8 where £ = n= [k+1] is the largest bin boundary,
k+1
A ~
and for x > b = (E + yn)lz, £ Kk = Yn1-g is the f-th nearest

k+1 k+1

sample to x. The bins have been chosen sc that each bin contains
approximately [k+l] training samples. Referring to Figure V.4 again,

the density estimate still has not been determined for the regions



f(x)=;‘;]/(<fj+l -fj ) for ‘g_j_sxs‘fiﬂ

k+l  k+l kel k+l

fB(x) for {k <x<h

K+l k+1
A _ A ~ ‘P"] >
f(x)=9~ﬁ—‘/2|x—§1 I f(x)=—n-/2|x’§k/
k+ ~
for x<a for x>b
| | | |
4 d i €k b yn
\ - jg:i EEi /
A B
a=(y,+¢& )2 b=(&, +yp)/2
K+ K+
FIGURE X.4

Random Bin Density Estimate with NN Tail Region Estimate

k+l

i

?T-A
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-~

A= {x|a<x<Eg 1 } and B = {xlg p < %< b}. The density in
k+1 k+1

regions A and B is estimated for the experimental examples in
this report by centering a bin from the NN model at the midpoint

of the regions. (a + E 1 Y/2 is the midpoint of region A, and
k+1
(E I + B)/2 of region B. Thus with each bin containing 2 samples,

k+l - 2
(a+ & )

kbl A
2 g Y

~ 9,-—1 ~ ~
£, (x) === /2 for 3 <x<E, (V.16)

————

kt+1

where ?y is the 2-th nearest training sample to (a+ 21 Y/2, and
k+1

for é K X < b (V.17

k+1

where Ey is the f2~th nearest tralning sample to (£ K + E)/Z.

k+1

The density has a constant value throughout each interval A and B.

The tail regions were estimated by the NN model in the manner explained

in order to assure that the bins in the tail regions contain approximately
the same number of samples as the bins in the center region which had

been estimated by the random bin model.

V.4 Experimental Results of the Estimated SPRT Tested on Gaussian Data

This section shows the results of the SPRT with the random bin
density estimate tested on independent, scalar Gaussian samples. The

mean of the distribution from class 1 is -0.8, and the mean of class 2
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is +0.8. The variance of both classes is one. Experimentally, a

good relationship between the number of training samples n and the
number of quantiles k seems to be k = nllz. Lof tsgaarden and
Quegsenberry [17] also state that on the basis of some emperical

work using their estimate a value of % near nl/2 appears to give good
results. For the fullowing examples, n = 999 training samples and k = 29
quantiles (giving k+1 = 30 bins) were used for each density estimate.
After the density functions of both classes are estimated, the
estimates were tested in the SPRT with one thousand test observations
from each class. The test was conducted with several values of the
error probabilitjes, o= p(decide class 2!class 1 true) and £ = p(decide
class 1|c1ass 2 true). The next two sections present the experimental
results for the two tail region treatments discussed in Sectioms V.3.1

and V.3.2.

V.4.1 Experimental Results of the Estimated SPRT With r
Observations Falling in the Tail Region$

Section V.3.1 discusses the treatment of the tail region where a
decision 1s made either by the SPRT applied to observations between
the tail regions or after r observations fall in one of the tail regionms.
Table V.1 shows the experimental results. Values of r from one to
five were considered. The error rates in Table V.l for r = 1 represent
neglecting the tail region problcm and allowing %l(x) and ?z(x) to be
zero for observations in the tail regions. It 1s observed that the
experimental error rates for r = 1 are indeed higher than the specified

a and B. The error rates are decreased by increasing r. More obser~



V-17

Experimental Results

Numb ex
observations
in tail Experimental average
regions for Experimental
a= B decision error rate mumber observations
. for decision
Class 1 |} Class 2| (Class 1 | Class 2
.1 1 . 084 .059 2.15 1.92
2 044 .026 4.04 3.71
3 .064 .035 5.35 4.95
4 .051 .055 6.37 6.14
5 .058 .043 7.25 7.20
.01 1 .080 .061 2.49 2.12
2 .015 .088 5.13 4,39
3 .0075 0.0 7.47 6.42
4 .019 0.0 4.45 8.20
5 0.0 0.0 11.11 10.0
.001 1 .081 .062 2.53 2.15
2 .016 .013 5.38 4.46
3 0.0 . 0067 8.06 6.76
4 0.0 0.0 10,31 9.01
5 0.0 0.0 12.82 10.88

n = 999 training samples in each class

Estimated SPRT with r Observations Falling in Tail Regions

Gaussian -

TABLE V.1

k+1 = 30 bins

1000 test observations from each class
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vations on the average are taken before a decision for the increased
r. From Table V.1, a value of r = 3 appears to be adequate to bring
the experimental error rates down to the specified a and B, and

r = 4 certainly appears sufficient.

V.4.2 Ewperimental Results of the Estimated SPRT with NN
Tail Region Estimate

The random bin denéity estimate combined with an NN density
estimate in the tail regions is discuse.d in Section V.3.2. The
experimental results of the SPRT formed with this estimate are
shown in Table V.2. The parameter % in the KN estimates (see
equations (V.14), (V.15), (V.16), and (V.17)) is set equal to 33,
which is approximately the number of samples in each interval of
the random bin model. The experimental error rates in Table V.2

are observed to be below the specified a and B.

V.5 Conclusion to Chapter V

In comparing Sections V.3.1 and V.4.1 with Sections V.3.2
and V.4.2, the NN density estimate appears toc be a more satisfactory
solution to the tzil region problem. With the NN method, the strudture
of the SPRT is preserved and the specified error probabilities * and B
retain Cheir meaning.

Section V.2.1 mentioned that the wmarginal density estimates

f(xl), f(xz),...,f(xt) that multiply together to form the joint density,

B(xp0Kypenenx,) = E(xl)E(xz)---E(xt) ,

are dependent since they are estimated from the same training samples.
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Experimental Results
Average number
Experimental of observations
—_— error rate required for
decision

Class 1 | Class 2 Class 1 [ Class 2

.1 .033 .046 2.75 3.29
01 .005 . 0062 5.0 6.21
. 001 0.0 0.0 7.14 9.09

n = 999 training samples in each class k+1=30 bins

1000 test observations from each class

Gaussian -

Estimated SPRT with NN Tail Region Estimate

TABLE V.2
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~

Thus, L(xl,xz,...,xt) is a biased estimator of L(xl’XZ""’xt)’
although the bias tends to zero as n + ®, On inspecting

Table V.2, this dependence appears to have not adversely affected
the experimental error rates. The dependence is discussed further
in the next chapter. So far only scalar samples have been con-
sidered, and the next chapter also discusses multidimensional

samples.



CHAPTER VI

MULTIDIMENSIONAL SAMPLES AND DEPENDENT OBSERVATIONS

This chapter discusses some techniques for handling multi-
dimensional samples and dependent observations in the estimated
SPRT. In considering multidimensional samples, the symbol s
denotes the total number of dimensions or features of a vector
sample, and the number of a particular feature is indicated by

a superscript, for example xi is the i-th feature of the sample

2

X = (xl,x ,...,xs) . (VI.1)

VIi.l] Multidimensional SPRT

One method of classifying independent multidimensional observations
with the SPRT is simply to form the estimated likelihood ratio with

multivariate density estimates

o 1 2 S, n 1l 2 s ~ 1
fz(xl,xl,...,xl)fz(xz,xz,...,xz) fz(xt,x
a1 2 8.~ 1 2 s ~ , 1
fl(xlsxl’-ul,xl)fl(xz’xz,ndl’xz) fl(x.g

=4
,...’xt)

2
- t
L(xlixz""!xt) = 2
t

s
y X :-*-:xt)

(V1.2)

But estimating the density of an s—-dimensional random variable requires
a large number of training samples. As the dimension increases, more
bins are needed to maintain deterministic accuracy, and then more
training samples are needed to assure random accuracy by each bin
ecentaining an adequate number of samples.

The approach used in this report for treating multidimensional

samples is to transform the vector samples into scalars such that the
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new scalars are random variables whose univariate density functions
can be estimated. The estimation of the univariate densities of the
scalar transformed samples requires fewer training samples than

the estimation of the multivariate densities of the original vector
samples. While multivariate density estimates are not considered

in this thesis, Appendix VI.1 briefly discusses how the density
estimates mentioned in Chapters III and IV can be extended to the

multidimensional case.

Vi.1.1 Linear Combination of Features

As mentioned in the previous section, if the multidimensional
samples of each class are transformed inte scalars, the simpler
univariate density functions can be estimated with fewer training
samples. The estimated SPRT can be formed with the ratio of the
univariate density estimates of the transformed samples of each class. 1In
essence, a new classification problem has been formulated involving only
scalar samples where the two classes of scalar samples are the transformed
original multidimensional samples of the two classes.

Among the infinite variety of transformations that can be chosen,
a transformation should be selected such that

i) the transformed scalar possesses the various properties

required for the estimation of its density function and SPRT as dis-
cussed in Chapter IV, and

ii) the transformed scalar samples of the two classes should be
separated as much as possible in some sense.

This section explores the use of a linear transformation
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, = lel N szz 4 oeee 4 sts (VI.3)

where Yy i=1,2,...,8 are weighting factors. A linear transformation
has been chosen because of the ease of finding such a transformation.

1f (Xl,Xz,...,XS) is an s-dimensional random variable of the continuous

type, then Z = lel + YZXZ

+ e + YSXS is a random variable of the
continuous type and Z satisfies all the required properties presented
in Chapter IV for the estimation of its density. The choice of

linear transformations to separate classes of training samples was
discussed in Section I1.4.1. Section II.4.1 mentioned that many
algorithms have been developed for placing a separating hyperplane
between two classes of samples [1], and that the equation of such

a separating hyperplane can be used as a linear transformation to
reduce the multidimensional samples to scalars. The specified error
probabilities @ and B of an SPRT can still be met if densities of
scalar transformed samples are used instead of the original multi-
dimensional samples. The knowledge of the multidimensional density
estimates, however, would be expected to provide more decision making
information than knowledge of the density estimates of the transformed
samples. The information loss of transformed density estimates occurs
in an increase in the average number of observations required for a
decision. Nevertheless, the advantages of scalar transformed samples

are fewer training samples needed to estimate the density and the

simpler calculations for a univariate density estimate.
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Vi1.1.2 Discussion of EEG Data

Experimental testing of the SPRT with a linear combination of
features was performed on the same EEG data that was used for exper-
imental testing in Chapter II. The classification problem with EEG
is outlined in Section I.2, and Appendix I1.2 analyzes the EEG
data in detail. The classification problem is to decide if an

arbitrary string of EEG responses are stimulated by a subject where

clags 1 : no light is flashing (normal response)
or

class 2 : a light is periodically flashing into the subject's

eyes {(evoked response).

As mentioned in Chapter II, the length of responses between the
flashazs is one hundred milliseconds, and each response is considered
to be an observation or sample. The waveforms measured from the
patient are continuous and were converted to vector samples by sampling
the amplitude every millisecond. The sampling resulted in a one
hundred dimensional vector. Since a dimension of one hundred was
quite large, five features out of the hundred were selected for the
classification process. The feature reduction scheme of Prabhu [1 ]
(the feature reduction scheme is explained in Appendix II.1) was used
to select the five features which have the most classification infor-
mation according to a criterion that separates the sample means of the
two classes and minimizes the sample variance about the means. A linear

transformation was applied to the samples with the coefficients of a
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separating hyperplane determined by the scheme of Prabhu.

The random bin density model was estimated for each class from
999 transformed training samples. The number of quantiles was k = 29.
An SPRT formed from the density estimates was tested on one thousand
transformed observations from each class. The next two sections
show the test results for the random bin SPRT with the two tail region
treatments discussed in Sections V.4.1 and V.4.2,

VI.1.3 Experimental Results of the Estimated SPRT with r

Observations Falling in the Tail Regions - EEG

Table VI.1 shows the EEG experimental results where a decision
is made either by r observations falling in a tail region or by the
SPRT applied to observations occuring between the tail regions.
Values of r from one to five are treated and three different specified
error probabilities o and f are considered. On inspecting Table VI.1,
it is seen that the experimental error rates are on the order of the
specified probabilities of error if r equals four or five. Comparing
Table VI.1 and V.1, the error rates for the EEG samples are higher for
the same values of r than for the Gaussian samples. The EEG responses
as they occur serially in time are dependent, and so the independence
assumption 1s not met. Independence was assumed both for saying that
the joint density of several observations is equal to the product of
marginal densities and for estimating the marginal densities from
training samples. The dependence accounts for the higher error rates in

Table VI.1l. Also the EEG signals are slightly nonstationary.
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Experimental Results
Number
observations
T Experimental average
regions for Experimental
, number observations
o =R decision error rate
N for decision
i Class 1 | Class 2] Class 1 Class 2

.1 1 . 105 .045 2.09 2.08

2 074 047 4.1 3.91

3 .067 .053 5.62 5.32

4 .067 062 6.75 6.25

5 061 .068 7.58 6.85
.01 1 . 104 043 2.36 2.39

2 . 049 . 029 4.95 4,81

3 .029 .028 7.46 7.05

4 .019 .G18 9.61 9.26

5 0.0 .02 11.9 11.1
. 001 1 .10 .034 2.41 2.44

2 .051 .020 5.01 4.95

3 .031 0.0 8.06 7.58

4 0.0 0.0 10.65 10.0

5 0.0 0.0 12.8 12.5

n = 999 training samples in each class k+1l = 30 bins

1000 test observations from each class

EEG -

Estimated SPRT with r Observations Falling in Tail Regioms

TABLE VI,1
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VI.1l.4 Experimental Results of the Estimated SPRT with

NN Tail Region Estimate - EEG

Table VI.2 shows experimental results for the SPRT with the
tail regions of the densities estimated with the NN model. The para-
meter £ for the NN estimate (see equations (V.14), (V.15), (V.16),
and (V.17)) was set equal to 33 so each bin whether from the random
bin or NN models contained approximately the same number of training
samples. The experimental error rates in Table VI.2 are observed
to be higher than the specified o and . As mentioned in the previous
section, the observations are dependent, and the independence assumption
ig violated. The next section discusses a method of overcoming the

problem of dependence of observations.

V1.2 Dependent Observationa

So far in this thesis the observations have been assumed to be

)

independent so that the joint density of t observations f(xl’XZ""’xt
can be expressed by f(xl)f(xz)---f(xt). The method presented in this
section treats dependent observations by using the density of the sum

of t observations rather than the joint density of t observations.

VI.2.1 Using the Sum of Observations in the SPRT

The method to be presented for testing correlated features is a

variation of the approach of taking a linear combination of the features

of multidimensional samples. In the usual SPRT, the likelihood ratio

of t observations is



VIi-8

Experimental Results
Average number
Experimental of observations
o =B error rate required for
decision
Class 1} Class 2 ) Class 1 |Class 2
.1 .136 0345 2.83 2.47
.01 . 0698 . 0092 5,81 4,63
.001 .0517 | 0.0 8.62 6.67
n = 999 training samples in each class k+1=30 bins

1000 test observations from each class

EEG -

Estimated SPRT with NN Tail Region Estimate

TABLE VI.2
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f2(x1’x2"'°’xt’

’ (VI."})
fl(xl,xz,...,xt)

and if the observations are independent, the ratio can be writter as

fz(xl)fz(x2)°"f2(xt)
fl(xl)fl(x2)°"fl(xt)

(VI.5)

If the observations are dependent, the two likelihood ratios are
not equal, and the error rates of the dependent EEG samples in
Table VI.2 where the likelihood ratio in equation (VI.5) is used
are indeed higher than the specified error probabilities. Instead
of the likelihood ratio of the joint densities of t observations, a

possible likelihood ratio is that of the densities of the sum of t

observations
fz(x1+x2+...+xt) VL&)
fl(x1+x2+...+xt)
t
The sum of t observations z Xy is a scalar, and thus the estimate
i=1

of this likelihood ratio involves estimating only univariate density
functions. The likelihood ratio in equation (VI.6) 1s exact even
if the observations are dependént. In essence, a new random variable

t
)} x, has been defined. If the X

, i=1,2,...,t, are random -rariables
i i
i=1 t
of the continuous type, then Z L9 is a random variable of the
i=1

continuous type and satisfies the requirements presented in Chapter
IV for its density function to be estimated. A string of observations
can be classified by the SPRT formed with the likelihood ratio of

equation (VI.6). While the SPRT formed with the new likelihood
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ratio can meet the specified error probabilities, the sum of t observations
contains less decision making information than the values of the

separate t observations. The loss of information results in a greater
average number of obgervations being required for the test to make a
decision. Thus the new test no longer has the property of the Fegular
SPRT that among all tests for which a and B are specified, it requires

the smallest number of observations to reach a decision on the average.

But using the likelihood ratio of the sums of observations provides

a test that is exact for dependent observations and that involves only

the densities of scalar samples.

In discussing the likelihood ratio in Section V.2.1, the product
of estimated marginal densities was substituted for the estimated
joint densities since the observations are independent. But because
the marginal densities are estimated from the same training samples,

they ar= dependent and

E[E(xl)%(x2>---E(xt)] $ E%(xl)EE(xz)---E%(xt)

(although equality does hold as the number of training samples

aporroaches infinity). The product of marginal density estimates was

used, however, since the estimation of the t-variate density f(xl’XZ"'"’xt)
for large t r«quires a large number of training samples. The estimated
likelihood ratio of the sums of observations avoids any problems associated

with the dependence of marginal density estimates.
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VI.2.2 Practical Consi’ rations in Using the Sum of Observations

in the Estimated SPRT

If the estimated SPRT is performed with the likelihood ratio

of the sum of observations, the density functions of the random
t

variables z X
i=1

{ need to be estimated,

A . L x
f(xl),f(xl+x2),...,f(i£1 xi),,.. .

The random variables are scalars so the density estimation is
straight forward. But in an SPRT, the number of observations t

may become large, and the number of training samples needed to

t

estimate £( E xi) increases as t increases. To obtain m different

i=1

t t
samples of Z x, for the estimation of £( E x,), mt samples of x

1=1 1 j=1 1 1
are required. For a finite number of training samples, it is

t
possible to accurately estimate f( z xi) for only smaller values of t.
i=1

In the experimental results of the next section, the maximum number

of observations summed together is six so that an adegquate number

of summed samples would be obtained from which to estimate the densities.
In a string of observations larger than six, the product of several
densities of sums is taken. For t observations, the ratio would be

ety L )

£.0) x)f.( x,) e f.( X,)

24ay 1724001 2 i=rt/6l641 *
6 12 t

£.0Y x)E ( x, ) f( x.)
1oyl 127 L 1 i=[t;6]ﬁ+l 1

(VE.7)
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This ratio is of course equal to equation (VI.6) only if

6 12 t

Z X;» Z X yooey x, are independent. However,
i=1 1=7 1 i={t/6]6+1

equation (V1.7) provides better results than eguation (IV.6)

because for t observations equation (IV.7) assumes the independence

of [t/6]+1 random variables and equation (VI.6) that of t variables.

6
Also if X1sXnseee Xy, are dependent, the dependence between Z X,
i=1
12
and E Xy is less than that between two consecutive xi'S- When
i=7

u is the maximum number of observations in any sum, the general

expression for the likelihood ratio is

o) :

£, ) x,)E( ®)eeof %)

R *1=[¢/ulutl * (VI.8)
R R A

£.( x, )£, ( x )£, *

12 101 j=utl T 1 i={t/u]utl '

V1.2.3 Experimental Results of Using the Sum of Observations -

EEG
Table VI.3 shows the experimental results of the estimated
SPRT formed with the ratio of egtimated densities of gums of obser-
vations. The EEG data discussed in Section VI.1l.2 was used. The
maximum number of observations summed together is six, which means
that the densities of the sums of one, two,..., and six observatioms
need be estimated,

f(xl),f(x1+x2),...,f(

X,) .
i i

1

[ty No))

The total number of training samples used was 1476, and so the densities
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Experimental Results
Average number
Experimental of observations
error rate required for
o =R .
decision
Class 1§ Class 2 | Class 1 { Class 2
.1 .0618 .0278 5.67 5.55
.01 0.0 0.0 16.4 13.9
.001 0.0 0.0 25.6 20.8
Y

1476 training samples, k+1 = 15 bins

246 sums of 1,2,...,6 samples
in each class

1000 test observations for each class

EEG -

Estimated SPRT Using Sums of OLservations in
Random Bin Density Model with NN Tail Region Estimates

TABLE V7.3
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were estimated from 246 groups of six training samples (1476 was

the largest number of training samples available for experimentation
that was divisable by 6.) The densities were estimated by the random
bin model with fifteen bins combined with the NN model in the tail
regions.

The experimental error rates in Table VI.3 meet the 5pecif£ed
error probabilities. The error rates in Table VI.3 are lower than
those in Table VI.2, which shows the results of the product of
marginal density estimates, but Table VI.3 requires more observations
on the average for a decision. Increased accuracy has been gained
by using the sum of observations.

VI.3 Conclusion to Chapter VI

This chapter has discussed some ways of handling multidimensional
and dependent samples. For multidimensional samples, the samples are
reduced to scalars by a linear transformation; for correlated samples,
the likelihood ratio of the sums of observations is taken. The objective
of these procedures is fb allow univariate densities to be estimated
rather than joint densities. Increased accuracy in the error rates
has been achieved, but the average number of observations necessary for

a decision has increased.
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Appendix VI.1 - Multivariate Extensions of Density Estimates

Considered in Chapter III and Chapter 1V

The presentation of multivariate density function models in
this appendix is brief and is intended only to indicate ways the
models are generalized to multidimensional samples. The dis-
cussion is not detailed, and convergence conditions are not shown.

The approach in generalizing the marginal density estimates
to multidimensional samples is to extend the interval A in equation

(I11.2), which is repecated here

1im p(obserxation e A _ £(x)

-

to a multidimensional volume element.

Multidimensional Fixed Bin Estimate

The extension of the fixed bin model (see Section III,.3.1)
to the multidimensional case is straightforward. Instead of
specifying bins in one dimension, bins are constructed in s dimensions.

The multidimensional equivalent of the fixed bin model is

%( 1 2 x3) = number of samples in bin i volume of
£ X 0o total number of samples s-dimensional
bin 1

(VI.1.1)
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Multidimensional Parzen Estimate

The Parzen estimate (see Section II1.3.2) can be generalized to
the multidimensional case by replacing the one dimensional interval by
a multidimensional volume element. To obtain the density estiwmate, the
fraction of training samples in an s-dimensional bin centered at x is

divided by the volume of the bin,

?(xl x2 xs) _ humber of samples in bin centered at x volume
ety total number of samples of bin

(V1.1.2)

The general Parzen estimate in equation (III.5) is extended by using

kernels of s variables.

Multidimensional NN Estimate

Loftsgaarden and Quesenberry [17] give the multidimensional
generalization of theilr estimate. Centered at x is an s-dimensional
hypersphere whose radius is the distance from x to the 2(n)-th
nearest sample measured by some metric d(x,xz(n>). The estimate in

equation (III.9) extends to

1 2 s, _ 2(n)-1 volume of hypersphere
f(x 3X gesayX ) - n / of radius d(XQXR(n))

s s/2

2[{d(x,x 9 I
sa(n) 1/ 2(n) (VI.1.3)

sP(

where xﬁ(n) is the 2(n)-th nearest traiuing sample to x.
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Multidimensional Random Bin Estimate

In extending the random bin estimate to the multidimensional
case, the objective is to cover the S-dimensional sample space with
s~dimensional bins while letting the boundaries of the bins be
determined by the training samples. The multidimensional estimate
is presented by considering a two dimensional example. Figures VI.l
and VI.2 can be consulted to provide visual illustrations. As shown
in the figures, the multidimensional estimate partitions the sample
space into volume elements where each element contains the same
percentage of training samples.

First, the sample space is partitioned into strips parallel to
the xz—axis in such a way that each strip contains an equal fraction
of the training samples. See Figure VI.1l. The n two dimensional
samples,

A I (VI.1.4)

1 .2 1 2
(xl’xl) » (x2$x2) aveey (x ' X

are ordered according to the values of the first features,

2 1l
(xi ’xi )S(Xi ,xi ),'."(xi gxi ) (VI.}-'S)
1 1 2 i n n
where
xi < xi < oo % xi .
1 2 n

. 1 1
Such an ordering uses an ordering function gl(x ,xz) = X . Let
the integer k1 be the number of lines drawn to partition the xl—axis.

Then k, of the first features in equation (Vi.1.5) are selected and
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X X + X % X
X X % J(
X X
g Xt X x X
X
X X X x
X X X X
X X X X X
X
X X
X
X
X X % %
X X e % 1
X > X
A 8
! 2 I-th stri ks
— = ~-th stri —
K Kl P Ko+l
Figure VI.1 First Step in Bin Placement for Multivariate
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Figure V1.2 Bin Placement for Multivariate Random Bin

Density Estimate
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labeled according to

Pas
£ ] = X, for j=1,2,. ,kl . ‘(VI.1.7)
k+1 (8_]41
k_+1
1
So a set of kl first features is chosen, (2 1 6 9 ,...,8 k1 )
kl+1 k1+l kl+l

Lines are drawn parallel to the x2~axis through the k. samples whose

1
first features have the values specified in equation (VI.1.7). The
strips between the lines each contain appromimately the same number
of training samples.

Each strip is now partitioned separately into k,+1 parts by

2

drawing lines within each strip parallel to the xlnaxis as shown in

Figure VI.2. Each segment is to contain approximately the same

number of training samples. The partitioniung procedure of each

strip is shown by considering one strip, say the p-th strip. Let

np be the number of samples in the p-th strip. The fact that the

p-th strip is being considered is indicated by placing a superscript p

on the pairs of parentheses enclosing the samples in the p-th strip,
(xi,xi)p,(xé,xg)p,...,(xnp,xnp)p : {(V1.1.8)

The samples in the p-th strip are ordered according to the values

of the second features

(xl ,X.z )D,(M:1 .x? )P, ee, (x} sx2 )P (VI.1.9)
NI E R P P an an

1
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where

The ordering function that has been used for this is g (xl,xz) = xz.
2

Select k2 of the second features from the set in equation (VI.1.9)

and relabel them according to

(VI.1.10)

p
2 [k2+1]+1

So a set of k2 second features

(npl » ﬁpz gmony nﬁ )
2
k2+1 k2+1 -E;;I

has been chosen from the samples in the p-th strip. Lines parallel
to the xl—axis are urawn through the k2 camples in the p-th strip
whose second features have the values given in equation (VI.1.10).
The lines extend only between the boundaries of the p-th strip as is
shown in Figure V.2.
The other strips are also partitioned by the method explained in
the previous paragraph. The two dimensional sample space is now partitioned
into (ki+1)(k2+l) parts as in Figure VI.2. The density estimate for

any observation x = (xl,xz) is

L ; . o P
e F Y (D) /€ e, 0 ) ) LD

kl+l kl+1 k2+1 k2+1

%(xl,xz) =




Vi-21

~ l “ O 2 D
where £ 0 £ x € ; +1 and n 3 € x < nj+l .
kl+l k1+l k2+1 k2+1
& 3 and ap. are defined by equations (VI.1.7) and (VI.1.10).
kl+l k2+l

The density estimate in equation (VI.1l.1ll) has involved a
partitioning of the sample space with ordering functions. Ordering

1 and g,(xl,xz) = x2 could be

functions other than gl(xl,xz) = x
chosen. The estimate can be extended to more than two dimensions

by repeating the procedure of partitioning the sample space for

the additional dimensions.

The approach to the multivariate random bin density estimate
explained in this appendix has a possible drawback. In the presentation
of the bivariate extimate, bin boundaries are first placed parallel
to one axis, and then each of these intervals is subdivided. This
method does not treat the samples symmetrically. Long, thin bins
may result where wider, shorter bins would be more desirable. By

using several different ordering functions during the partitioning,

it may be possible to modify the methoed to overcome this difficulty.
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CONCLUSION

VIT.1 Concluding Remarks

Two sequential, distribution-free pattern classification
procadures have been presented., Estimates of the probabilities of
misclassification have been given, and experimental results of
testing on Gaussian and EEG patterns agree with the estimated error
rates. An estimate of a probability density functlion has also been
proposed.

In the method based on order statistice, a set of thresholds
is determined from the training samples, and each observation in the
sequential test is compared to a different pair of thresholds demend-
ing on the particular iteration. In the method based on the SPRT,
the likeliheod ratio is estimated from the training samples. The
estimated likelihood ratio is then updated to include each new
observation and is compared to the same pair of thresholds through-
out the test.

The information carried from one iteration to the mext in the
sequential test based on order statistfcs is that the previous obser-
vations fell in the intervals bertween thelr wespective thresholds
at each iteration. In the extimated version of the SPRT, the two
density functions are estimated at the values of the observations,
and so more preeise information abou%z the location c¢f the observations

is carried from one iteration to the next. The estimated SPRT uses
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local information of the training samples near each &b servation while
the order statistics method considerg- all training samples at once
to determine the thresholds.

When the number of training samples is limited, a smaller error
rate is experimentally easier to obtain with the estimated version
of the SPRT. As mentioned in the previous paragraph, the estimated
SPRT uses more precilse information on the location of the observations.
The method based on order statistics determines the thresholds
directly from the training samples. If the specified probability of
misclassification at each iteration is small, the intervals outside
the thresholds will contain fewer training samples, and consequently
the accuracy of the estimated probability of a future observation
falling in these intervals is less. The specified error probabil-
ities may also be so small that the number of training samples that
are calculated to be contained outside the threshclds is less than
one. In thg estimated SPRT, density functions are estimated from
training samples; the number of samples in each interval of the step-
function density estimate is a parameter of the density estimate
and is independent ot the desired error rate. Each bin of the density
estimate cam be required to contain several training samples, and
thereby the accuracy of the density estimate can be controlled.
Thus when the number of training samples is limited, the estimated
SPRT performs better at samller error rates.

The estimated SPRT has fewer prior assumptions about the
pattern classes. Chapter II mentioned that in order to use the

order statistics method the pattern classes should have one region
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of overlap such that when multidimensional samples are transformed
to scalars the new scalar samples of one class lie largely

below those of the other class. The order statistics method with

a linear transformation cannot solve decision problems where the
samples of one class are surrounded by those of the other class.

The estimated SPRT, which estimates density functions, does not have
this restriction. But the order statistics procedure is simple to
implement and is well suited to the case where the two classes

can be separated to a degree by a linear transformation.

The number of training samples would be expected to influence
how small an error rate can be obtained and the accuracy of the
predicted error rates. Arbitrarily small error rates would not
be expected to be obtainable from a limited number of training
samples due to inaccuracies in the estimacion procedires. The
experimental error rates presented in this thesis do agree with the
predicted error probabilities. In fact for the estimated version of
the SPRY, error rates as small as .l percent were obtained with

1000 training samples from each class.

VIT.2 Suggestions for Future Work

i) The approach taken in this report for treating multidimene
sional samples wag to reduce them to scalars by a linear transformation.
Linear transformations that separate the two pattern classes were
selected. A possible area for future work is to investigate the use
of nonlinear transformations. Improved separation of the two pattern

classes might be obtained with nonlinear transformations, and the
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average number of observations taken for a decision would be expected
to decrease. Also, different transformations might be used in different
reglions of the sample srtace.

ii) More efficient use of the observations taken in the sequential
test based on order statistics may be possible by comparing all the
observations taken up to each iteration with the latest pair of.thresholds
instead of only comparing the most recent observation. The calculations
for the thresholds should be modified to take into account that all
previous observaticns are being compared to the thresholds at each
iteration since the estimated probabilities of taking the next
observation are now different. By comparing all observations, the
sequential test would be expected to make a decision after taking
fewer observations.

iii) Some improvement in the random bin density estimate
might be possible by developing an interpolation technique to smeoth
the estimate so that it is continuous rather than a step~function.

Also, it may be possible to penerate a continuous estimate of the
distribution function by an interpolation procedure and use it in the
sequential test based on order statistics. With a continuous distri-
bution function estimate, the thresholds could be placed more pre-
cisely for the desired error rates rather than setting thresholds only
equal to the values of training samples.

iv) The density estimate proposed in this report is a step-function.
This means that the distribution function is approximated in each interval
by a linear curve. An improved density estimate might be obtained by

fitting a nonlinear curve in each interval. There is a set of m
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sample values {xi}, i=1,2,...,m, in each interval and a set of estimated
distribution function values for these samples {?(xi)}, i=1,2,...,m,

A non-linear curve could be fitted %o these noints, and the density
function would of course be the derivative of the curve. It should

be kept in mind, however, that g(x) is only an estimate of F(x),

and no matter how sophisticated a curve is fitted, there is an in-
accuracy from the estimated function values. So the improvement

in a density estimate by fitting a non-linear curve may be limited

by the accura~y of estimating F(x). But some improvement in the
estimation accuracy should be possible by using a nonlinear curve

since the deterministic approximation to the density function may

be better and hence the bin width may be wider. Thus the bin may

contain more training samples. The tradeoff remains between 1l.) increasing
the bin size to contain more samples and hence increasing the accuracy

of the estimation, and 2.) decreasing the bin size to obtain a better
deterministic approximation to the density function; but it may be

possible to change the balance point.
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